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Vividness of mental imagery: Individual variability can be measured 
objectively
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Abstract

When asked to imagine a visual scene, such as an ant crawling on a checkered table cloth toward a jar of jelly, individuals subjectively
report diVerent vividness in their mental visualization. We show that reported vividness can be correlated with two objective measures:
the early visual cortex activity relative to the whole brain activity measured by functional magnetic resonance imaging (fMRI) and the
performance on a novel psychophysical task. These results show that individual diVerences in the vividness of mental imagery are quanti-
Wable even in the absence of subjective report.
© 2006 Elsevier Ltd. All rights reserved. 
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1. Introduction ception (Farah, 1988; Ganis, Thompson, & Kosslyn, 2004;
Visualize the sun rising above a rocky mountain range
into a bright sky. How vivid is your mental picture on a
scale from 1 to 5, where 1 is akin to a photograph, and 5 is a
pictureless concept? Subjective measures have found a wide
distribution in the vividness of the visual images that diVer-
ent individuals generate (Amedi, Malach, & Pascual-Leone,
2005; Hatakeyama, 1997; Marks, 1973; McKelvie, 1994;
McKelvie & Demers, 1979). We here seek to Wnd whether
this individual variability is objectively measurable—spe-
ciWcally, whether subjective reports are correlated with
measures of blood Xow (fMRI) and/or performance on a
visual psychophysical task.

Accumulating evidence suggests that the neural sub-
strates of visual imagery are similar to those of visual per-
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Ishai & Sagi, 1995; Kosslyn, Thompson, & Alpert, 1997;
Kreiman, Koch, & Fried, 2000)—not surprisingly, there-
fore, the visual cortex is widely activated during imagery
(Amedi et al., 2005; Ganis et al., 2004; Kosslyn et al., 1993;
Kosslyn et al., 1997; Kosslyn, Thompson, Kim, & Alpert,
1995; Mellet, Tzourio, Denis, & Mazoyer, 1995). A previous
study has suggested that visual cortex activity and vividness
of visual imagery have a trend of positive correlation
(Amedi et al., 2005). Thus visual cortex activity is a promis-
ing candidate for an objective index of the subjective
vividness.

If visual cortex activity correlates with reported vivid-
ness of visual imagery, then it is possible that performance
on a psychophysical task which utilizes the visual cortex
may also diVerentiate visualizers (Hatakeyama, 1997). To
this end, we have developed a color perception and naming
task as our probe. The reason for using this task, besides its
dependence on the visual cortex, was based on an observa-
tion in our laboratory that those who were more visually
oriented showed a diminished ability to identify a brieXy
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displayed color word when the background screen color
matched the word meaning. To test that hypothesis, we
sought to systematically determine whether high visualiza-
tion and poor performance on our color-naming task were
indeed correlated.

2. Methods

2.1. Subjects

Eight subjects (6 Males, 2 Females, ages 25–31) participated in the fol-
lowing three experiments: subjective vividness rating, color naming task,
and visualization task while being scanned by fMRI scanner. Two addi-
tional participants were excluded from the analysis because their accuracy
in the color naming task was less than 35%, where chance performance
was 25%.

2.2. Subjective vividness rating

We measured participants’ vividness of visual imagery (VVI) with a
standardized battery of visualization questions (Marks, 1973) which are
listed in the supporting online material. The average of the vividness rat-
ings of the 16 questions was used. Note that a low VVI score means vivid
imagery and a high score means vague imagery.

2.3. Color naming task

In the color naming task, we asked participants to report the identity
of the words brieXy Xashed on a computer screen (Fig. 2a). On each trial,
the background screen color turned yellow, orange, or purple, and 32 ms
later the word “yellow”, “orange”, “purple”, or no word appeared in a
central rectangle for 32 ms. The words were always in black. Participants
reported on the keyboard which of the three words they saw (or no word).
Each participant completed 120 trials.

2.4. Visualization task

In the fMRI scanner, the participants were blindfolded with their eyes
covered by sleeping masks. Each participant completed 24 trials. In the
beginning of each trial, the participants were given auditory instructions to
visualize themselves or another person either bench pressing or stair
climbing. The participants were asked to begin visualization upon hearing
an auditory “go” signal, and continue visualization until they heard an
auditory ‘stop’ signal. The duration between ‘go’ and ‘stop’ was set to be
10 s. The next trial started 10 s after the ‘stop’ signal, resulting a 10-s rest
phase (Fig. 1a).

2.5. fMRI methods

Images were acquired with a 3T Siemens scanner. High-resolution T1-
weighted scans were acquired using an MPRage sequence (Siemens) prior
to the functional scan. Functional run details: echo-planar imaging, gradi-
ent recalled echo; repetition time (TR)D 2000 ms; echo time (TE) D 40 ms;
Xip angleD 90°; 64 £ 64 matrix, twenty-nine 4 mm axial slices, yielding
functional 3.4£ 3.4 £ 4.0 mm voxels. Data analysis was performed using
SPM2 (Wellcome Department of Imaging Neuroscience, University Col-
lege London, United Kingdom; http://www.Wl.ion.ucl.ac.uk/spm/
spm2.html) and visualized using xjView (http://people.hnl.bcm.tmc.edu/
cuixu/xjView). Motion correction to the Wrst functional scan was per-
formed using a six-parameter rigid-body transformation (Kao, Davis, &
Gabrieli, 2005). The mean of the motion-corrected images was co-regis-
tered to each individual’s structural image using a 12-parameter aYne
transformation. Slice timing artifact was corrected, after which the images
were spatially normalized to the MNI template by applying a 12-parame-
Fig. 1. Relative activity in visual cortex correlates with subjective vividness rating. (a) Timeline of the visualization task. Participants began to visualize
upon hearing the ‘go’ signal, and stopped visualization upon hearing the ‘stop’ signal, resulting a 10-s visualization phase and 10-s rest phase. All instruc-
tions are auditory. (b) Time course of the relative fMRI signal in visual cortex for 8 participants. Relative fMRI is taken as the BOLD signal in early visual
cortex (Brodmann’s areas 17 and 18, illustrated in inset) minus the BOLD signal measured over all of gray matter. For plotting purposes, participants are
ordered by their relative visual cortex activity averaged over the visualization window of 0–10 s. The negative signal for some subjects is due in part to the
subtraction of the whole brain activity—i.e., other regions can increase more than the visual cortex during the time window. (c) The relative visual cortex
signal averaged over the visualization window correlates signiWcantly with the subjective rating of vividness (p D 0.04).
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ter aYne transformation, followed by a nonlinear warping using basis
functions. Images were then smoothed with an 8 mm isotropic Gaussian
kernel and highpass Wltered in the temporal domain (Wlter width of 128s)
(King-Casas et al., 2005).

We used as our region of interest the early visual cortex—speciW-
cally, Brodmann areas 17 and 18 (Fig. 1b, inset), as deWned in the data-
base of MNI Space Utility (http://www.ihb.spb.ru/%7Epet_lab/MSU/
MSUMain.html). This area contains 526 voxels. We calculated the rela-
tive fMRI signal in visual cortex as the following: The time series of
fMRI signals were averaged across the 526 voxels in the visual cortex.
The baseline of the averaged signal was calculated by moving average
(with window size 200s). The averaged signal was then subtracted by the
baseline (detrending). The detrended signal was divided by the baseline
to obtain the percentage change of fMRI signal in visual cortex. We
then subtracted this signal by the percentage change of signal of the
whole brain gray matter and obtained the relative fMRI signal in visual
cortex. The gray matter (containing 8451 voxels) is also deWned by MNI
Space Utility. The resulting signal is then averaged over the 10-s imag-
ery window to obtain Figs. 1c and 2c, d. We subtracted the visual cortex
signal by the whole brain gray matter signal to determine the visual cor-
tex activity relative to that of the whole brain. This subtraction—spatial
baseline removal—can be viewed as the counterpart of the temporal
baseline removal employed in most fMRI time series analysis. We felt
this was important to isolate changes speciWc to visual cortex instead of
changes in whole brain activity. We also repeated the analysis without
removing the spatial baseline.

3. Results

3.1. Vividness of visual imagery correlates with fMRI 
activity in early visual cortex

The relative visual cortex activity starts to diVerentiate
for diVerent subjects during the visualization phase and
then gradually converges during the rest phase (Fig. 1b).
We averaged the relative visual cortex activity over the
visualization window (0–10 s) for all participants and corre-
lated it with their subjective VVI scores. We found a strong
correlation (Fig. 1c, rD¡0.73, pD 0.04), demonstrating that
higher relative visual cortex activity indexes more vivid
imagery (a lower VVI score). This result suggests one can
measure visual cortex activity to probe the vividness of a
subjects’ imagery, thus obtaining a more objective measure
of a previously subjective rating.
Fig. 2. Word-color interference correlates with subjective and objective measures of visual imagery. (a) Timeline of the color word identiWcation task. On
each trial, the background screen color turned from gray to yellow, orange, or purple, and 32 ms later the word “yellow”, “orange”, “purple”, or no word
Xashed for 32 ms in a central rectangle. Participants reported on the keyboard which of the three words they saw (or no word). (b) The performance in
congruent trials (where word and background color were the same) and incongruent trials (word and background color were diVerent). Participants are
ordered as in Fig. 1. (c) Correlation between vividness of visual imagery and the congruent–incongruent performance. The latter is deWned as the diVerence
between performances on congruent versus incongruent trials, as seen in (b). (d) Correlation between the relative visual cortex activity and congruent–
incongruent performance. (For interpretation of the references to color in this Wgure legend, the reader is referred to the web version of this paper.)
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3.2. Performance on a novel psychophysical task correlates 
with vividness of imagery and visual cortex activity

On average, the eight participants displayed 54§3%
accuracy in identifying which word was displayed, and
85§ 7% accuracy in identifying that no word was pre-
sented. We noted a small, seemingly random diVerence in
accuracy between the trials in which the displayed word
matched the background color (‘congruent’) and when it
did not match (‘incongruent’): we will refer to this as the
congruent–incongruent performance (Fig. 2b). This diVer-
ence was often small and could easily be dismissed as noise,
but observation of the participants led us to notice that
those who were more visually oriented (lower VVI score)
seemed more likely to suVer diminished performance in
congruent trials. To test this, we correlated VVI and the
congruent–incongruent performance and found a good
correlation (rD 0.73, pD0.04, Fig. 2c), indicating that sub-
jects with stronger visual imagery are more susceptible to
same-color interference. We then correlated visual cortex
activity with the congruent–incongruent performance
diVerence, and found high signiWcance (Fig. 2d, rD¡0.77,
pD0.03).

4. Discussion

These Wndings emphasize the importance of examining
individual subject variability. For imaging data, averaging
the relative visual cortex activity (Fig. 1b) across subjects
would have led to the conclusion that the visual cortex did
not signiWcantly change during visualization phase. Indeed,
a conventional general linear model (GLM) and random
eVect analysis was done using SPM2 (see Section 2) and the
resulted t-values in visual cortex were not signiWcant (data
not shown). For behavior data, averaging the performance
accuracy from the word-naming experiment (Fig. 2b)
would have erased the individual diVerences between the
congruent and incongruent performances of the subjects.
Only upon more detailed inspection of the individual Xuc-
tuations does a pattern emerge. SpeciWcally, these data indi-
cate that subjects who are more visual in subjective
measures (VVI) and objective measures (bloodXow in
visual cortex) are more susceptible to a color-naming inter-
ference. Note that this eVect is the opposite of the Stroop
eVect (Stroop, 1935), in which incongruence between an ink
color and the color-name leads to cognitive conXict and
slower reaction times. Here, for the more visual subjects,
incongruent colors make it easier to see a color word. These
Wndings imply an increased interaction between brain areas
that code for color perception and color naming in highly
visual individuals. Areas potentially implicated in this
increased language-imagery interaction are medial occip-
ito-temporal cortex (in particular, human area V4 or areas
just anterior to it (Zeki et al., 1991), in which lesions lead to
achromotopsia, a deWcit in color perception (Bouvier &
Engel, 2006)) and left occipital lobe (in which lesions cause
color anomia, a deWcit in color naming (De Vreese, 1991)).
Whether this increased interaction results from increased
visualization skills, or instead explains it, remains an open
question.

Our Wndings may have applications in legal settings. It
has been reported that false memories occur more easily for
high visualizers than for low visualizers (Dobson & Mark-
ham, 1993; Douglas, 1996; Wilson & Barber, 1978). If an
eyewitness is a high visualizer, her accuracy of recalling the
actual crime scene may be compromised, especially during
a forensic investigation procedure called the cognitive inter-
view (CI), in which she is explicitly asked to visualize scenes
from the perspective of a person or an object located in
another position in the room (Geiselman, Fisher, MacKin-
non, & Holland, 1986). Some authors thus suggest aban-
doning the imagery component of the CI (Ceci & Bruck,
1995; Douglas, 1996). Our Wndings suggest that instead of
abandoning the imagery, one might use our objective meth-
ods of evaluating imagery ability prior to the CI to Xag wit-
nesses who might be more susceptible to false recall. More
broadly, and with further study, the objective methods
introduced here might be used in forensic investigations to
generate an index of the reliability of eyewitness recall.

Previously, the vividness of a person’s imagery has
been accessible only through verbal report. Our study
shows that we can read out an individual’s ‘private’
imagery vividness by measuring blood Xow changes in
early visual cortex. This Wnding is conceptually interest-
ing because it shows that aspects of mental thought can
be studied objectively with current technology (e.g.,
fMRI). It is also practically promising: though still more
inconvenient to administer than self report, it opens the
possibility that we can measure vividness by more than
one method. Subjective rating is a standard method in
psychology and psychophysics. However, there are few
methods to check its truthfulness and validity (Prelec,
2004). In some cases people may lie if there is a conXict of
interest (e.g., during forensic investigation). Thus an
objective measure is at least beneWcial and sometimes
necessary. Finally, while it is true that the VVIQ is easier
to administer than a neuroimaging experiment, in some
cases (e.g., forensic investigation) objectivity may be
suYciently important that the cost of fMRI scan is triv-
ial. In extreme cases (e.g., in studying vegetative patients),
fMRI measures may be the only option (Owen et al.,
2006).

These Wndings may also lend a new interpretation to a
recent study on synesthesia (Mattingley, Rich, Yelland, &
Bradshaw, 2001). In that study, a subject with synesthesia
showed diminished performance in identifying a digit when
the digit was presented against a background that matched
her synesthetic color association. The authors of that study
suggested that her ‘projection’ of the synesthetic color
caused the digit to ‘blend’ into the background, making it
more diYcult to discern. However, an alternative hypothe-
sis suggested by our Wnding is that high visualization capac-
ity of the subject may have caused interference between the
synesthetic digit and the background color.
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