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Duration estimates within a modality
are integrated sub-optimally

Ming Bo Cai and David M. Eagleman *

Laboratory for Perception and Action, Department of Neurosience, Baylor College of Medicine, Houston, TX, USA

Perceived duration can be inuenced by various properties b sensory stimuli. For
example, visual stimuli of higher temporal frequency are peeived to last longer than
those of lower temporal frequency. How does the brain form aapresentation of duration
when each of two simultaneously presented stimuli in uence perceived duration in
different way? To answer this question, we investigated thperceived duration of a pair
of dynamic visual stimuli of different temporal frequencgein comparison to that of a
single visual stimulus of either low or high temporal frequeey. We found that the duration
representation of simultaneously occurring visual stimiuls best described by weighting
the estimates of duration based on each individual stimulusHowever, the weighting
performance deviates from the prediction of statisticallpptimal integration. In addition,
we provided a Bayesian account to explain a difference in thapparent sensitivity of the
psychometric curves introduced by the order in which the twestimuli are displayed in a
two-alternative forced-choice task.

Keywords: duration perception, cue integration, memory deca y, Bayesian inference, temporal frequency, time

order error, just noticeable difference

Introduction

Estimating how long an event lasts is a perceptual capacity wieautilize in daily life. For
example, we distinguish words with similar sounds, such &gép” and “ship,” based on the
duration of a syllable; a salesman can infer a customer'sastdy how long the customer gazes
on each item; we judge internet speed based on the time it takésad a webpage; various
electric devices signal di erent messages to us by the duraif a beep or ash. However, the
mechanisms by which the brain estimates a duration is stiflear (For an non-exhaustive list
of recent reviews on duration perception, geegleman, 2008; Ivry and Schlerf, 2008; Grondin,
2010; Merchant et al., 20).A traditional view of duration perception is that the brain ggesses a
dedicated “internal clock™{reisman, 1963; Gibbon, 19)/Tn this view, duration perception is less
dependent on low-level sensory processing. However, receahpghiysical studies have revealed
that perceived duration can, in fact, be in uenced by variqueperties of a visual stimulus,
such as temporal frequency or speed of motid@iciwvn, 1995; Kanai et al., 2006; Kaneko and
Murakami, 2009; Tomassini et al., 2011; Kline and Reed,)2@hange of speedC@arrozzo and
Lacquaniti, 201) numerosity {ong and Beaton, 1981; Xuan et al., 2Q&ontrast {ong and
Beaton, 1980; Xuan et al., 2Q008patial frequencyAaen-Stockdale et al., 201and looming
(van Wassenhove et al., 200Fhe fact that duration perception is in uenced by so many fow
level sensory features suggests that the details of a gestioulus contribute to its perceived
duration. Perceived duration is not only in uenced by the perty of sensory stimuli, but also by
the history of stimuli: a repeated stimulus appears briefentaanovel stimulusTse et al., 2004;
Pariyadath and Eagleman, 2007; Schindel et al., 2011;rBbaget al., 2014 This phenomenon
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has been suggested to re ect a link between neural responExperiment 3, we quantitatively compare these candidate tsode
amplitude and perceived duratiorPériyadath and Eagleman, based on the trial-by-trial cross-validated log-likeldtbof the
2007; Eagleman and Pariyadath, 2008 addition, it was models.
found that after adaptation to a fast drifting visual stimsju
a slow drifting visual stimulus is perceived as being of srort Participants and Methods
duration when it appears at the adapted visual eld, but not
at other locations {ohnston et al., 2006; Ayhan et al., 2009The experiments were approved by the Institutional Review
the involvement of low-level sensory processing in duration
perception, but also demonstrates that stimuli in di erent part Participants
of the visual eld can provide di erent evidence of duration. Except for the rst author, participants were all naive to the
The nding that perceived duration can be biased by thepurpose of the study. Participants provided informed consent
sensory features of stimuli creates a puzzle. Even if viije¢ts  and received compensation. Nineteen participants (8 males, 11
at di erent locations last for the same physical duration, ythe females. Age 27 7) took part in Experiment 1. Twenty-one
each can bias perceived duration in di erent directions due toparticipants (13 males, 8 females. Age 297) took part in
their sensory features. How does the brain form a represemtat Experiment 2. Twenty participants (6 males, 14 females. Age 27
of duration based on the duration estimates from di erentuds 6) took part in Experiment 3.
objects?
One possibility, as an extension of the hypothesis thaf\pparatus
perceived duration is based on neural response amplitudExperiment stimuli were displayed on a CRT monitor (Viewsonic
(Eagleman and Pariyadath, 200is that the perceived duration G225f) with a screen resolution of 102468 pixels and a refresh
may be based on the sum of the total neural response to all thate of 100 Hz, driven by a Dell Precision T3400 workstation
stimuli. An alternative hypothesis is that an estimate ofation  running Windows XP. There was no other light source other
is formed based on each stimulus and the brain integratesethethan the monitor in the experimental room. Participants sat
estimates by a weighted average. A stronger statement ®f thit a distance of approximately 60cm from the display. Each
hypothesis is that the integration may be statistically oplim participant wore a pair of earplugs with approximately 33 dB
(Ahrens and Sahani, 20)L1A third hypothesis is that the brain noise reduction to prevent distraction.
may form a duration representation based on only one of the
stimuli, with certain probability. A fourth hypothesis is ththe ~ Stimuli
brain may only rely on the stimulus type that provides moreStimuli were presented using PsychtoolboxE3&inard, 1997;
reliable (less variable) estimate of duration acrossdribastly, Pelli, 1997; Kleiner et al., 200for Matlab. Stimuli consisted
it is possible that the brain may generate a representation aff one or two drifting Gabor patches with spatial frequency of
duration based on each stimulus and keep all the representati 0.28 cycle/degree (estimated at 60cm viewing distance). The
In this last framework, the brain may have exibility to che® standard deviation of the 2-dimensional Gaussian envelop of
which representation to use depending on the task. each Gabor patch was 0.90'he starting phase of each Gabor
Closely related to the question asked in this studyhan patch was independently sampled from a uniform distribution
et al. (2012)nvestigated whether human observers can averagever the range of 042 The peak luminance of the Gabor patch
the durations of multiple objects. They ashed multiple image was 36.0 cd/rh Stimuli were presented over gray background
of dierent durations with asynchronous onsets and askedof mid-luminance. Each Gabor patch was displayed at a distance
participants to make judgments with regards to the averagef 5.4 visual angle away from the xation point. The xation
duration of those images. The precision of the duration judgniin  point was at the center of the screen, indicated by a whitescros
was found to be worse when judging the average duration afpanning a visual angle of 0.6Through the time course of
multiple images than when judging the duration of a singleeach stimulus, the sinusoidal component of each Gabor patch
image. The authors suggested that this re ects an inabibity drifted in a direction independently sampled from a uniform
aggregate duration information from multiple itemsiyhan  distribution over the range of 0-360The speed of their drifting
et al.,, 201 While this may be the case when the stimuliwas such that the luminance of any pixel of the Gabor patch
have asynchronous onsets and o sets, there has been meas modulated by a sinusoidal time signal of either 1 Hz (fer th
study investigating whether and how human observers combinlow temporal frequency stimulus) or 6 Hz (for the high temporal
duration information from multiple objects which appear and frequency stimulus). At the onset of each stimulus, the casttr
disappear synchronously. To study the combination of dumatio of the Gabor patch ramped up linearly from zero to maximum
information without introducing asynchrony between stifiju in 40 ms. At the o set, it ramped down in 40 ms. This ramping
we utilize the illusion that the temporal frequency of a visuaof the contrast was to minimize potential arousal introdudsd
stimulus biases perceived duration to create con ictingreates  abrupt onsets of stimuli.
of duration. In Experiment 1, we con rm this illusion by a two- ~ Whenever two Gabor patches were displayed simultaneously,
alternative forced choice task. In Experiment 2, we qualitdyi  the centers of the two Gabor patches were on opposite sides from
test the predictions of each of the above hypotheses to foctise xation point, both on an invisible line that passed thrdug
our attention on a few most plausible candidate models. Irthe xation point. In any trial, the orientation of the invibie
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line passing through the xation point and the Gabor patch(es)3, 4, 4, 4,5, 5,5,5,5,5,5,5,4, 4,4, 3,3, 2, 2,2, and 1 times.
in the rst epoch was randomly sampled from a uniform These numbers of incidences were generated to approximate
distribution over 0—p. The invisible line passing through the a Gaussian distribution described above. Trials correspand
xation point and the Gabor patch(es) in the second epoch waso di erent conditions, orders and comparison durations were
always orthogonal to the invisible line in the rst epoch. $hi randomly interleaved in a session. There was no signal tic#@ie
design was to minimize the e ect of adaption due to presentingo the participants which condition a trial belonged to.

consecutive stimuli at the same locatiam(inston et al., 2006 )
Experiment 2

Experiment Procedures On all trials, the reference stimulus was an HL stimulus. The

On each trial, a participant watched two groups of drifting Gabo cqmparison stimulus was an L, H, or HL stimulus. T_he refe_rence
patterns on the screen one after another and judged whethéfimulus was always presented before the comparison stimulus.
the duration of the second group was longer or shorter tharFach condition had 148 trials. In each condition, the compariso
that of the rst group. Each group was composed of either timuliof 100, 140, 180, ..., and 1100 ms occurred for2,2,44,
single Gabor patch drifting at 1 Hz (we denote this by L), or & 6.6.8,8,8,8,8,8,8,8,8,8,6,6,6,4,4,4,2 and 2 tifees. T
single Gabor patch drifting at 6 Hz (we denote this by H), or alfials of the three conditions were randomly interleaved.

pair of Gabor patches, one at 1Hz and the other at 6 Hz (wi
denote this by HL). In an HL stimulus, the two Gabor patche here were seven conditions in the experiment. In two
had the same onset time and o set time. The directions in Whic conditions. the reference stimulus was H: the cc;mparison
they drifted were randomly chosen and independent from each ' ’

- . . stimulus was H or L, respectively. In two other conditions,
other. If a participant asked which one patch of the HL stlmulusthe reference stimulus was L; the comparison stimulus was H

they should judge, he/she was instructed that since the patChor L, respectively. In the other three conditions, the refeen

appeared and disappeared synchronously, he/she should judg[clemuluS was HL: the comparison stimulus was H, L, or HL
the duration in which both of them stay on the screen. ' > '

The structure of each trial was as follows. A trial started b respectively. On half of the trials of each condition the refiere

. L %timulus was presented before the comparison stimulus. On the
a xation cross appearing in the center of the screen. After g : . .

. . o other half of the trials, the comparison stimulus was presented
duration sampled from a uniform distribution over the range

of 600-1000ms, the rst group of Gabor patch(es) appearec?emre the reference stimulus. Each condition had 228trighch

500-700 ms after the o set of the rst group of Gabor patch(es) part|C|pan_t com_pleted three_ sessions of expenme_nt. I_:or each
the second aroun appeared. 300-600 ms after the o set of t order of display in each condition, the comparison stimuli of 100

group appeared. S O "0, 180, ..., and 1100 ms occurred for 3, 3, 3, 3, 3, 3, 3, 6, 6, 6
second group, the xation cross disappeared and the participan

were allowed to make response. They indicated the duration of 6,6,6,6,66,66,3,33,3,3,3,and 3 times in total dver a
P ) y sessions. Trials corresponding to di erent conditions, aslend

o . . . Yurations of comparison stimuli were randomly interleavedhi
key, or indicated it as lasting shorter by pressing the lafbwr . . . .
. session. The number of trials corresponding to each condljtio
key. No feedback was provided. 1000—2000 ms after they made . ; .
. order and duration of comparison stimulus was equal across
response, the next trial started.

) . sessions.
On any trial of an experiment, one group of Gabor patches

lasted for 600 ms. We denote this stimulus of xed duration by

reference stimulus. The other group lasted for duration oo Results

of 26 values between 100 and 1100 ms, equally spaced by steps of

40 ms. We denote this stimulus by comparison stimulus. FoneacEXperiment 1

of these 26 values, the number of its incidence was approxiynatdt has been found that visual stimuli of higher temporal freqay
proportional to the probability density of a Gaussian distilom ~ Or faster speed are perceived as lasting for longer than those
with a mean of 600 ms and a standard deviation of 300 ms at th&f lower temporal frequency or slower speeda(ai et al,
duration, rounded to the nearest integer. Thus, over therseu 2006; Kaneko and Murakami, 2009ur goal in Experiment

of an experiment, the distribution of the duration of compamis 1 is to conrm this nding. In the previous literature, the

%xperiment 3

stimuli approximates a truncated Gaussian distribution. overestimation of duration was measured by a reproductishta
after watching a stimulus, participants pressed a button for as
Experiment 1 long as they believed the stimulus had lasted. The variafice o

There were two conditions in the experiment. In one condition the reproduced duration in such a task is contributed to by
the reference stimulus was H and the comparison stimulus wabe variance of participants' perceived duration and the noise
L (denoted by LvsH). In the other condition, the referenceswain their motor timing. To avoid the latter, we used a two-

L and the comparison was H (denoted by HvsL). On half ofalternative forced choice task, in which participants watttveo

the trials of each condition, the reference stimulus appearedonsecutive stimuli and judged which lasted longer. Thisrs @
before the comparison stimulus. On the other half of the &jal more accurate estimation of the di erence in perceived duasi

the comparison stimulus appeared before the reference stenulubetween stimuli of high and low temporal frequencies.

Each condition had 180 trials, including both orders of digpla  The stimuli of an example trial are shown iRigure 1A

For each order of display in each condition, the comparisorEach stimulus was a supra-threshold Gabor patch. Each pixel
stimuli of 100, 140, 180, ..., and 1100 ms occurred for 1,2,2, of the Gabor patch was modulated by a sinusoidal time series
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of either 1Hz (we denote this low frequency by L) or 6 Hzduration for simultaneously presented H and L stimuli. For
(we denote this high frequency by H). Thus, the Gabor patclsimplicity, trials of di erent orders of display but belonging
appeared as a grating that drifted behind a static 2-dimeradionto the same condition were aggregated in the analysis. We
Gaussian aperture. The rst Gabor patch appeared at a randontted each participants responses in each condition by a curve
location with xed distance from the center of the screendtion  of Gaussian cumulative distribution on the logarithmic scal
point). The second Gabor patch appeared at the same distano€ duration, with an additional term capturing lapse rate, the
from xation but either 90 clockwise or counterclockwise from chance that a participant had not paid attention to the stimuli
the rst Gabor patch. On any trial, one of the stimuli lasted (Wichmann and Hill, 200). The ratio of the perceived duration
for 600ms (we denote this as reference stimulus), and thef comparison stimuli to that of reference stimuli in each
other lasted for one of 26 durations equally spaced betweeasondition was calculated based on the exponential of the shif
100 and 1100ms (we denote this as comparison stimulusdf the psychometric curve in the logarithmic scale. We denote
The distribution of the duration of the comparison stimulus this ratio by the duration distortion ratio (DDRFigure 10). In
approximated a truncated Gaussian distribution with mean othe LvsH condition, the duration of the L stimulus was judged
600 ms and standard deviation of 300 ms. On half of the trialsas 27.3 3.0% (mean s.e.m, the same through this paper
the comparison stimulus was H and the reference stimulusinless otherwise stated) shorter than the H stimulus; theRDD
was L (HvsL condition). On the other half of the trials, the was signi cantly smaller than ltgg) D  9:10,p < 0:001]. In
comparison stimulus was L and the reference stimulus wathe HvsL condition, the duration of the H stimulus was judgeesd
H (LvsH condition). On half the trials of each condition, the 52.1 6.8% longer than the L stimulus; the DDR was signi cantly
reference stimulus appeared before the comparison stimulas. Qarger than 1 {;g) D 7:67,p < 0:001]. The standard deviations
the other half, it appeared after. Participants reported whettie  of the tted Gaussian cumulative distribution functions reggent
second stimulus lasted longer or shorter than the rst stioau participants' sensitivity in discriminating duration in thavo
The participant-averaged psychometric curves are displayambnditions, termed as just noticeable di erence (JND). The JND
in Figure 1B A leftward shift of a curve from centering at 600 mswas 0.27 0.03 on the logarithmic scale of duration in the LvsH
indicates that the duration of the comparison stimulus wascondition, and 0.35 0.03 in the HvsL condition. They were
overestimated relative to the reference stimulus, and vegsa  signi cantly di erent [t1gy D 3:99,p < 0:001]. The JND in
for a rightward shift. There was a slight discrepancy betweelogarithmic scale has similar meaning to Weber's ratio. When
the curves corresponding to di erent orders of display, namelypsychometric curves were tted without applying logarithmic
that curves deviated more from the reference duration ancewe transformation of duration, the conclusions about DDR and
shallower when the comparison stimulus was presented rsis Th Weber's ratio stayed the same. The absolute value of the DDR
type of discrepancy was also found in many other studies aé very di erent between LvsH and HvsL conditions. This may
perceptual judgments\achmias, 2006; Lapid et al., 2008; Brundndicate that the distortion in perceived duration causedtbg
etal., 2010, 2012; Ahrens and Sahani, 0We will investigate temporal frequency is multiplicative instead of additive.
the source of such discrepancy in Experiment 3, together Experiment1con rms the previous nding thatthe perceived
with quantitatively comparing models of the representatidn o duration of visual stimulus is biased by its temporal freqoen

A B C
100
\ 23 2
=< = T
/\, 1 Hz time £ 8 £ -
= e 1S
7 g ¥ £
= 50 I 8
238 2 1
=t /1 5
" Q. o =]
’VW\ 6 Hz g 2D [ L HvsL, ref first .2
SR=T I S 23 HvsL, comp first £ 0.5
—LvsH, reffirst R
h il " AL LvsH, comp first
Was the second stimulus o 600 1200 LvsH HvsL,
longer or shorter? Duration of comparison stimulus (ms)
FIGURE 1 | Visual stimulus of higher temporal frequency is perce ived two conditions. Red color: the condition in which L was refegnce stimulus
as longer than that of lower temporal frequency. (A) lllustration of an and H was comparison stimulus. Blue color: the condition in Wich H was
example trial. Two drifting Gabor patches with temporal frguencies of 1 Hz reference stimulus and L was comparison stimulus. Solid les: reference
(low frequency) and 6 Hz (high frequency), respectively, weedisplayed was displayed before comparison stimulus. Dashed lines: aoparison
consecutively with random order. One of them lasted for 600 m (reference stimulus was displayed before reference stimulug(C) Duration distortion
stimulus), the other lasted for a duration between 100 and 100 ms ratio of the comparison stimulus relative to the referencetsnulus in the two
(comparison stimulus). Participants judged which one stasd for a longer conditions. High-temporal frequency stimuli were judgedanger than
duration by pressing one of two keys.(B) Average psychometric curves of low-temporal frequency stimuli.
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or speed. This leads to our main question: how do we perceiwghere the weightvy is a parameter of each participant, in the
duration if two stimuli are presented simultaneously, one ofrange of [0, 1]. The distribution ofy would follow:

which moves faster and the other slower. In Experiment 2, we q

test several hypotheses. XqL  N(t C wyby C (1 wi)by; Wﬁ ﬁ C @ wy)? Lz)
(4)

Experiment 2 For any weightvy, this predicts that on average HL is perceived

This experiment examined the perceived duration of two stimul€dual to or shorter than H, and equal to or longer than L. The
appearing simultaneously at dierent locations, one of lowequality is only reached vy is O or 1, meaning one of the
temporal frequency (L) and one of high temporal frequency (H) €lements is neglected. It also predicts that the standarthtien

We denote such stimuli by HL. The H and L elements of it appeaPf the perceived duration of HL is equal to or smaller than the
and disappear at the same time. This provides a clue that thégrger one of those of H and L (namelyy. ~ max{ n, }).
should correspond to the same period of duration. However] he equality is only reached when the duration estimatioority
following the observation in Experiment 1, the H and L elengent Pased on the more variable estimation betwegnandx, i.e.,

of HL each should cause con icting biases on the respectivwhenwy D 1and |, orwhenwy DOand .

duration estimates, with H indicating a longer duration and ~ The statistically optimal way to weight sensory evidence is
L indicating a shorter duration. How does the brain form aby setting the weight of each duration estimation inversely

representation of duration for the joint stimulus? proportional to the variance of that estimationlgcobs, 1999;
We consider ve possibilities: Knill and Pouget, 2004 We denote the hypothesis that

the weighting follows this rule as the “optimal integration”
Global Summing Hypothesis hypothesis, as a stronger version of the “weighting” hypaghes

It is noticeable that neural response amplitude in visual corte Based on this hypothesis, we expect the perceived duration of HL
tested in Kanai et al.'s experimentSifgh et al., 2000 The S 5
bias in perceived duration caused by the temporal frequency ) 2H
or speed of visual stimuli may be explained by assuming that 5C
perceived duration is based on the neural response amplitude . )

to the stimulus Eagleman and Pariyadath, 200R may also be S€lection Hypothesis _ _
explained by assuming that duration perception is based on thi'Stéad of weighting the estimates based on the two stimulus
number of changes observesrpwn, 1995: Kanai et al., 2008s elements, the brain may estlmate_ the duration _based on orrrdy o]
possible extensions of both of these hypotheses, we may assufh&he two elements. On some trials the perceived duration may
that the perceived duration of multiple elements is based o€ based onthe H elementand on other trials it is based on the L
either the total neural responses to all the stimulus element €/€ment. The element selected to form duration represeoriati
the total number of changes in all stimulus elements. We deno ©" & trial may be the one which more attention is paid to.
such hypotheses by “global summing.” Both of them predict thaf\SSUMING a participant has a probability to rely on the H

HL should be perceived as lasting longer than both Hand L. élément to estimate duration, we have

XH ; with probability ¢
X_; with probability(1 o)

2
L

5 < minf y; g (5)
L

Weighting Hypothesis XHL (6)

The perceived duration of HL may be formed by a weighted

average of each estimate of duration based on one of its atsme wjith the same notation as we used above, the meapofcross
We denote by the estimate of duration based on an H stimulustrijals would be

lasting for a physical duration of and denote by, the one based

on an L stimulus lasting the same duratiog andx, both vary tC by C.1 /b (7)
across trials. We assume that their variations are indepetrated

and the standard deviation across trials would be
both follow Gaussian distributions: ot

q

¢ ACE o) 2Ca@ adbu  b)? (8
X4 N Cby; n) oy
x. NECh L) (2) This predicts that the average of the perceived duration of HL
across trials is also equal to or shorter than that of H, andatq
. . L to or longer than that of L. Equality is only reacheaif is equal
b and by, represent the bias of perceived duration introduced, g o 1~ ag opposed to the “weighting” hypothesis, it predicts
by their temporal frequenciesy and | represent the standard  ya+the standard deviation of the perceived duration of Htcms
deviation of the dllstrlbu.tlon ,OfXH and x.. qu S|mpl|9|ty, WE trials is equal or larger than the smaller one of those of H &nd
assume that a point estimation of the duration of stimulus HL(namer WL min{ u, 1}). The equality is only reached when
is formed by weightings andx,. the duration representation is always based on the stimylps t
which gives rise to a smaller variance of duration estinmatice.,
XHL D wxy C (1 wy)xe (3) whenggyD1land y< ,orwhengy DOand > |.
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Reliable Stimulus Hypothesis two as long as there is individual di erence regarding which
The brain might only rely on one of the stimulus types across alof H and L is estimated with less variability. They are furthe
the trials, and the stimulus type it relies on may be the on¢itha distinguished by their qualitative predictions af , the standard
general gives rise to more reliable estimation of duratidnder  deviation of perceived duration of HL. Without losing genétsal
this hypothesis, if a participant estimates the duration of khwi by xing the values of , | and by-by, Figure 2Cillustrates
less variability than estimating the duration of L, the peigant how . varies as a function ofwy or gy, which are both
may always estimate the duration of HL based on the H elementfree parameters of each participant. The “weighting” hypothesi
If the participant estimates the duration of L with less vailiy ~ predicts y.  max{ y. L} while the “selection” hypothesis
he/she may always rely on the L element to estimate the durati predicts y.  min{ y. L}. Under the “optimal integration”
of HL. This hypothesis also predicts thaty =~ max{ n, .}. hypothesis, a stronger version of the “weighting” hypothesis,
The average perceived duration of HL may be shorter than thave have y.  min{ n; L}. The “reliable stimulus” hypothesis
of H and longer than that of L across participants, if not allpredicts .  max{ . L}. The predictions about the average
participants estimate a same type of stimulus between H and jerceived duration of HL are tested by comparing the DDRs
more reliably than the other. However, for those who have enor of each stimulus type relative to HL. Although the standard
reliable estimates of duration based on H, the perceivedtthma deviations of perceived duration of each stimulus type cargot
of HL should be on average equal to that of H. And similarly fordirectly measured, they have monotonic relation with the 3ND
those who have more reliable estimates of duration based on L in each condition. Therefore, the predictions about the stz
deviations of perceived duration are tested by comparing the
Multiple Representations Hypothesis JNDs between conditions.
Instead of forming a single representation of duration as The participant-averaged psychometric curves are displayed
assumed by the above hypotheses, the brain might keep multiple Figure 2D. We tted each participant's responses similarly as
representations of duration, each based on one of the twim Experiment 1. The DDRs of the three conditions are displayed
simultaneously presented stimuli. When asked to compare thie Figure 2E In the LvsHL condition, the duration of the L
duration of HL with the duration of a single stimulus, the bmai stimulus was judged as 11.04.8% shorter than HL stimulus. In
might use one of the two representations formed during HL thathe HvsHL condition, the duration of the H stimulus was judge
is based on the stimulus element that is most similarto thglsit as 13.3 2.5% longer than the HL stimulus. In the HLvsHL
stimulus to be compared. For example, when viewing HL, theondition, the duration of HL as comparison stimulus was judge
brain might keep one duration representation based on H andis 5.9 2.7% longer than the HL as reference stimulus. A
one based on L. When asked to compare the duration of HL witlmepeated measures ANOVA revealed a signi cant di erence in
the duration of H, the brain might compare the representationDDR between the three conditionE, 40) D 11:81,p < 0:001].
based on the H element of HL with the duration representationPost-hogairedt-tests between each two conditions revealed a
of the single H stimulus. In this case, H should be judged tofbe signi cant di erence between the LvsHL and HvsHL conditions
the same duration as HL on average. Similarly, L should aso lftoq) D 4:21,p < 0:001], a signi cant di erence between
judged equally long as HL. In other words, under this hypoifies the LvsHL and HLvsHL conditionstpgy D  2:66,p D 0:015]
when the reference stimulus is HL and the comparison stimuluand a signi cant di erence between the HvsHL and HLvsHL
is H or L, the DDRs of H and L relative to HL should be equal. conditions ) D 3:33,p D 0:003], all of which passed the
To test the above predictions, we asked participants télolm-Bonferroni multiple comparison criterionHolm, 1979.
compare the duration of H, L, or HL against the duration of The DDR in HvsHL condition was signi cantly larger than 1
HL. Example trials are shown iRigure 2A. On each trial, the (t-test,p < 0:001). The DDRs in the LvsHL was on average
reference stimulus was always presented before the comparisemaller than 1, but the dierence was not signicant after
stimulus. The reference stimuli were all of HL type. Therecorrecting for multiple comparisonp(D 0:03, Holm—Bonferroni
were three conditions distinguished by the types of comparisocriterion). The DDR in the HLvsHL condition was also not
stimuli. In 1/3 of the trials, the comparison stimuli were L signi cantly dierent from 1 (p D 0:04, Holm—Bonferroni
(LvsHL condition). In 1/3, the comparison stimuli were H criterion). The JNDs of the three conditions are shown in
(HvsHL condition). In the other 1/3, the comparison stimuli Figure 2F. Because the psychometric functions were tted after
were HL (HLvsHL condition). Trials of the three conditiongve logarithmic transformation of the duration, their units aralso
randomly interleaved. Participants judged whether the tiora  in the logarithmic scale. A repeated measures ANOVA revealed
of the second stimulus was longer or shorter than that of tre¢ ~ signi cant di erence in JNDs between the three conditions
on each trial. [F; 400 D 7:48,p D 0:002]. Post-hogaired t-test between
We tested the predictions of each of the models by comparingach pair of conditions revealed a signi cant di erence betwe
the DDRs between conditions. Each of the hypotheses generatasHL and HvsHL conditionstf,oy D 2:81,p D 0:011], a
prediction about the relation between the average perceivesigni cant di erence between the LvsHL and HLvsHL conditi®n
duration of HL and those of H and LFigure 2B provides a [tpg) D 357, p D 0:002], but no signicant dierence
qualitative illustration of their di erences. The “weighty” and  between the HvsHL and HLvsHL conditiongzyy D  0:02,
“selection” hypotheses generate the same qualitative predict p D 0:31]. The JND in the HLvsHL condition was signi cantly
about the average perceived duration of HL. The “reliablemaller than the maximum of those in the other two conditions
stimulus” hypothesis may generate similar prediction as ¢heqtoq) D 4:23,p < 0:001], Figure 2G but not signi cantly
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FIGURE 2 | The representation of duration of simultaneously “weighting” and “selection” hypotheses if not all participnts estimate the
presented high- and low-temporal frequency stimuli (HL) can be same type of stimulus more reliably(C) lllustration of the different predictions
described by a weighted average of the estimates of duration b ased of the standard deviation of perceived duration of HL in comarison to that of
on the high-temporal frequency stimulus element (H) and H and L of the “weighting,” “optimal integration,” “selecton,” and “reliable
low-temporal frequency stimulus element (L). (A) Example of the stimuli stimulus” hypotheses. The gure is generated by assuming y D 0:2,
on a trial. Participants rst viewed an HL stimulus lasting fio600 ms, then L D 0:24, and by —b_ D 0:2. (D) Average psychometric curves of the three
viewed one of three types of stimuli, H, L, or HL, with variablduration conditions. (E) Average duration distortion ratio of the three conditions.
between 100 and 1100 ms. Participants judged which one lastd longer. (F) Average just noticeable difference (JND) of the three cortiins.
(B) The qualitative relation between the duration distortioratios of the (G) Comparison between the JND in the HLvsHL condition and the kger
comparison stimulus relative to the reference stimulus, pdicted by four JND of the other two conditions. Each dot corresponds to one prticipant.
hypotheses of how the representation of the duration of HL isormed. The (H) Comparison between the JND in the HLvsHL condition and the smller
“reliable stimulus” hypothesis may generate the same prediion as JND of the other two conditions.

di erent from the minimum of those in the other conditions of the duration estimation of HL compared to those of H and
[toyD  0:40,p D 0:69] (Figure 2H). L. JND indirectly re ects the standard deviation. The nding

The nding that HL was judged shorter than H argues that JND in HLvsHL condition was smaller than the maximum
against the “global summing” hypothesis. The “multipleof the JNDs in the other conditions supports the “weighting”
representations” hypothesis is also ruled out because H arahd “reliable stimulus” hypotheses. The nding that it wastno
L was judged di erently relative to HL stimulus. The pattern signi cantly di erent from the minimum of the JNDs in the
of DDRs among conditions of this experiment is consistenbther conditions does not provide support to the “selection”
with both the “weighting” and “selection” hypotheses. The ke hypothesis or the “optimal integration” hypothesis. If the
di erence of their predictions is with the standard deviation “reliable stimulus” hypothesis is true, then the participamso
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estimate the duration of H with less variability than L shaul The timing structure of a trial in Experiment 3 was the same
have no dierence in DDR between the HLvsHL and HvsHLas in Experiment 1. There were seven conditions, de ned by
conditions; the participants who estimate the duration of lthwi their reference and comparison stimuli. These conditions are
less variability should have no di erence in DDR between théllustrated inFigure 3A. The participant-averaged psychometric
HLvsHL and LvsHL condition. Because the JND is smaller ircurves of each condition and each order of display are shown
HvsHL condition for majority of the participants (16 out of 21) in Figure 3E Similarly to Experiment 1, a discrepancy existed
we test the former prediction in these participants. The DDRbetween the orders of displaying the reference and comparison
was on average smaller in the HLvsHL condition (7.3.2%) stimuli. In general, psychometric curves were steeper andrclose
than in the HvsHL condition (12.5 2.6%). The di erence was to the center of the range of duration when the reference shirs
marginally signi cant withp D 0:054. was displayed rst.

We also note that the DDR in the HLvsHL condition was In order to understand the process of forming the
larger than 1, although the signi cance level did not pass ourepresentation of duration of HL and the discrepancy in
multiple comparison threshold. This may be due to participantsjudgments due to the order of display, we constructed models
response bias or their prior belief about the relation betwd#en based on di erent hypotheses concerning three factoran(
rst and second stimuli. However, such factors should etjal den Berg et al., 20)4and compared the log-likelihood of each
impact all conditions. They do not in uence our conclusions model by cross-validating it within data of each participarie
because the conclusions are based on comparisons betwedstails of the model comparison approach are described in Data
conditions. When psychometric curves were tted withoutitady ~ Analysis and Modeling. Here we brie y list the major steps.

a logarithmic transform of duration, all conclusions remed We consider the generative model of the sensory
the same except that the JNDs in LvsHL and HvsHL were naneasurements of duration by the brain asHigure 3B The two
signi cantly dierent (p D 0:14), which was not crucial for durations to be compared on any trial were sampled from two
testing the model predictions. distributions, one corresponding to the reference stimulasd

Therefore, the result of Experiment 2 provided qualitativeone corresponding to the comparison stimulus, as illustrated
evidence that the perceived duration of two dynamic stimsili i in Figures 3B,C The order in which they were displayed
more likely formed by weighting the estimates of duratiorséa was random from trial to trial. The true durations should be
on each individual stimulus, although we cannot entirelieraut ~ unknown to the brain. The brain only has sensory measurements
the “reliable stimulus” hypothesis. of duration based on each of H or L stimulus, or each element

of HL stimulus, which are noisy and biased by the temporal

frequencies. We assume that the brain infers the relation
Experiment 3 between the two durations given its sensory measurements
Experiment 2 ruled out the “global summing” and “multiple of duration from each stimulus or stimulus element. We
representations” hypotheses, provided qualitative support téurther assume that the biases in sensory measurements are no
the “weighting” hypothesis, but could not rule out the “rddla  accessible to the brain at the inference stage. It is verkeigli
stimulus” hypothesis. The predictions of the “selection” andhat the brain learns the true distributions from which the
“optimal integration” hypotheses were not supported by the datadurations are sampled because of the noise in their sensory
but they were also not entirely ruled out. In order to formally measurements and the biases introduced by di erent types of
compare the “weighting” hypothesis, the “optimal integration stimuli. For simplicity, we model the belief of the distriboitis
hypothesis, the “selection” hypothesis and the “reliablastis” by convolution of the true distributions of the durations (of
hypothesis, one needs to explicitly model the decision processference and comparison stimuli) with a Gaussian kernel, as
of each trial, predict the probability that a participant makesdemonstrated inFigure 3C The asymmetric shapes of these
each judgment, and calculate the likelihood of each mode¢ Thdistributions result from the logarithmic transformatiomf
probability that one stimulus is judged longer than anotherduration.
depends on both the mean and standard deviation of the We constructed models by all combinations of assumptions
perceived duration of the two stimuli over repetition of tigal concerning each of three factors: how to form a represematio
As shown in Equations (4), (6), and (7), under each hypothesi®f duration for HL, whether the memory of the sensory
the mean and standard deviation of perceived duration of HLmeasurement of a stimulus' duration decays over time, and
depends on those of the perceived durations of both H and Lhow the brain incorporates prior belief of the distributions of
Experiment 3 additionally included conditions in which thed  duration in their decision. After constructing these modeis
stimuli on a trial were H and H, L and L, and H and L. Theseperformed a thorough factorial model comparison to examine
conditions constrained the tting of parameters correspamgli the performance of each hypothesis in each of the three factors
to the means and standard deviations of perceived duratiofvan den Berg et al., 20).4
of H and L, namelyby, b, H, and L. In Experiment 1 we For the rst factor, we considered the “weighting” hypothesis,
noticed a discrepancy in psychometric curves corresponding tptimal integration” hypothesis, “selection” hypothesis, and
di erent orders in which reference and comparison stimuli wer “reliable stimulus” hypothesis. They dier in how the brain
displayed. To investigate the source of this discrepancalstri calculates the likelihood of any duration being the true ation,
of both orders of display were included for each condition ingiven the sensory measurements of duration based on each
Experiment 3. elements of HL.
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FIGURE 3 | Model comparison provides quantitative evidence fo rthe
“weighting” hypothesis and identi ed the source of the disc repancy in
psychometric curves corresponding to different order of disp laying
reference and comparison stimuli. (A)  All the conditions tested in
Experiment 3. Each condition corresponds to one solid linenithe middle,
connecting reference, and comparison stimuli. The order iwhich reference
and comparison stimuli were displayed was random(B) The generative model
of an example trial for inferring the relation between two dations, if a
participant considers the full structure of the taskO, order of display; c-r,
comparison stimulus was displayed before reference stimus; r-c, reference
stimulus was displayed before comparison stimulusty , to, durations of the
rst and second stimuli; X, xp, sensory measurement of the rst and second
duration based on the stimulixy., Xp.| , sSensory measurements of the
second duration, based on its H and L element, when the stimuis type is HL;
D, decision variable indicating the relation betweery andt;. (C) lllustration of
how O decides the wayt; andt, are sampled from two different distributions
corresponding to the reference and comparison stimuli. Theolors of the
arrows correspond to the respective orders of displayD. (D) The work ow of
model comparison. Each model is tted to part of a participans trials (training
data) to nd the combination of parameters that maximized theprobability of
those trials. The tted parameters are used to predict the behvior in the rest of
the participant's trials (testing data). The probabilityfdhe testing data
assuming the parameters tted to the training data are logathmically

transformed to calculate the cross-validated log-likelibod. This procedure is
repeated by rotating the selection of testing data over eaclbf the 1/12 portion
of the data. Models are compared based on the sum of cross-vadlated
log-likelihood over all the data(E) Average psychometric curves. Figures in
the same column correspond to conditions of the same type ofeference
stimuli. Figures in the same row correspond to the same ordeof display. Color
codes for the type of comparison stimuli. Shaded areas reprgent the tted
choice probabilities in each condition (mean s.e.m) by the best model in(F).
(F) The difference of cross-validated log-likelihood of each wdel compared to
the best model. “weight,” weighting hypothesis; “select,’selection hypothesis;
“opt_int,” optimal integration hypothesis; “reliable_$,” reliable stimulus
hypothesis; “ at,” at prior hypothesis; “single,” single prior hypothesis;
“double,” double priors hypothesis.(G) With individual variability, “weighting”
model outperforms each of other models in most participantsThe bars
represent the differences of the cross-validated log-likéhood of the best
models assuming each hypothesis regarding the mechanism dbrming the
representation of duration for HL stimulus, compared to theof the best model
assuming “weighting” hypothesis. A negative bar indicatethe model is inferior
to the “weighting” model. Each group of bars corresponds to me participant.
(H) Participants tended to overweight the duration estimate bsed on H
stimulus. The coordinates of each dot correspond to the weibt of H estimated
in the “weighting” model and the weight of H predicted by the 6ptimal
integration” model for each participant.

For the second factor, we considered two hypotheses. Noszcond stimulus. The rst hypothesis, “decay” hypothesisgestat
that when participants made their judgments on any trial,that because of the elapse of time, the memory of the rst
more time had elapsed since the rst stimulus than since theluration decays more than the second, becoming noisier and
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more uncertain. To re ect this hypothesis, we assumed thaprior(s) of non- at form can introduce a di erence in choice
the standard deviation of the sensory measurement of the rsprobability between di erent orders of displaying referencelan
duration is scaled up by a constant factor relative to that oEomparison stimuli. (2) On average across participants, the
the second duration. The second, “no decay” hypothesissstat‘weighting” hypothesis was the best model to describe the
that the standard deviation is the same regardless of whetherrepresentation of duration of the HL stimulus. Among models
stimulus is presented rst or second. that can explain the e ect of displaying order, the best model was

For the third factor, we considered three hypotheses. Ththe one assuming a combination of the “weighting” hypothesis,
rst one, the “at prior” hypothesis, states that the brain doe the “decay” hypothesis and the “double priors” hypothesis in
not take into account any prior distribution of duration, tlsu the three factors, respectively. Pairetbsts between the cross-
its judgments are purely based on sensory measurements vdlidated log-likelihood of all other models and that of thesb
duration. The second one, the “single prior” hypothesis,estat model revealed that the best model outperformed every ofrothe
that the brain learns the mixture of the durations of refecerand models signi cantly (Thep-values passed Holm—Bonferroni
comparison stimuli as a global distribution and assumeslbioéh  multiple comparison thresholds wita D 0:05. The largesp-
durations on any trial are sampled from this distribution. &h value was 0.016 when comparing the best model against the
third one, the “double priors” hypothesis, states that theifbra model assuming a combination of “optimal integration,” “dg¢
learns the full structure of the generative modeFigure 3Cthat  and “double priors”). The average di erence across participants
the two durations on any trial are sampled from two di erent between the best model and the models with other hypotheses
distributions and displayed in random order. Consequently, regarding the representation of the duration of HL was attleas
incorporates the two learnt distributions and considerstbtite 3.2 (the best among those models with other hypotheses was the
possible orders of display in the decision process. one assuming “selection,” “decay,” and “double priors”) tib®

The work ow of the model comparison is illustrated in that this di erence is in the logarithmic scale. It means thia¢
Figure 3D. For each model, we derived the decision rules obest model with the “weighting” hypothesis performs at ledst 2
judging the relation between two durations given any possiblémes as well as models assuming other hypotheses regarding
sensory measurements on atrial. By integrating the hypathds the perceived duration of HL. Since the cross-validated log-
distributions of sensory measurements over the range wheee likelihood is on the same scale as Bayes factor, the guidance
of the two judgments should be made according to the decisionf drawing conclusion on model performance based on Bayes
rule, we obtained the probability that a participant should dav factor (Kass and Raftery, 19P8an help judge the strength of
made that judgment on any trial (we denote this by choiceevidence for the best model. According to Kass and Raftech su
probability). The choice probability depends on the parametersli erence as observed in the result of Experiment 3 is considlere
in each model. Each model thus can be tted to a subset ddis “strong” evidence for the best modeigure 3Eoverlays the
data (denoted by training data) of a participant by nding the average psychometric curves over the choice probability b
parameters that maximizes the product of the choice proba&slit the best model.
of all trials in the training data. Each model can be evaldditg Figure 3Gdisplays the model performance for each individual
predicting the probabilities of the judgments that the papint  participant, focusing on the mechanism of estimating duratd
had made in the rest of the trials (denoted by testing dataglba HL. For each participant and for each hypothesis regarding the
on the parameters tted to the training data. We conducted 12-perceived duration of HL, we identi ed the best model among
fold cross-validation of each model on each participant'sadat the ones with that hypothesis. The di erence in cross-validate
The logarithm of the product of predicted probabilities overlog-likelihood between each of these best models and the best
all testing data in the 12-fold cross-validation was comgare model with the “weighting” hypothesis is plotted Figure 3G
between models. We denote this measure by cross-validaged | for each participant. Although there is individual di erencettv
likelihood. This measure is not sensitive to the complexity ofespect to the best model for each participant, the “weighting”
the models. A model that is unnecessarily complex would blypothesis outperforms each of other hypotheses in most
over tted to the training data, resulting in low cross-vddited participants.
log-likelihood. We further compared the estimated weight of H element in

Figure 3F shows the dierence of cross-validated log-the best modelwiththe weight predicted by “optimal integoati
likelihood of each model from the model that is on average théased on the standard deviation of the duration estimatebef
best across all participants. The more negative the di ereace iH and L (Figure 3H). The participants' weights of H element
the worse a model performs. There are several observatioms fr (0.70 0.05) were signi cantly larger than those predicted by
this gure. (1) The largest distinction of model performane@s  “optimal integration” [0.50 0.03, paired-test,t(19) D 3:53,
introduced by the assumptions about memory decay and priop D 0:002]. There was no signi cant correlation between
belief of duration distribution. Models that assume the &xice  weights estimated in the best model and the weights predicted
of memory decay and assume the brain incorporates prior beliddy “optimal integration” ¢ D 0:86).
of the duration distribution in either form of “single prior” The discrepancy in psychometric curves found in Experiment
and “double priors” largely outperformed models that do notl can also be accounted for by the same mechanism found
make these assumptions. By investigating the choice pratyabil in Experiment 3. A model constructed with “decay” and
predicted by each model, we found that only the combinatioridouble-priors” hypotheses tted well to the psychometric cuisve
of the assumptions of memory decay and incorporation of(Figure 4). Models constructed with “no-decay” or “ at-prior”
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hypotheses cannot predict such discrepancy corresponding turves of trials belonging to the same condition but with dieat
di erent orders of display ( gures not shown). orders of displaying reference and comparison stimuli.

The result of Experiment 3 con rmed that the representation  Previously, the perceived duration of a sequentially
of duration of HL is best described by weighting the durationconcatenated stimulus that is composed of intermittent pasio
estimates based on each stimulus element. The brain appeafsstatic and drifting stimuli was found to be perceived sleort
to weight H more than predicted by “optimal integration.” In than a constantly drifting stimulus of the same duration bot
addition, it shed light on the source of discrepancy in pap#sits'  di erent from a static stimulus Bruno et al., 201R This appears
judgments between di erent orders of displaying reference anéh contrast to our nding that participants overweight the
comparison stimuli. Degradation of memory with elapsing timeestimate based on the H element when estimating the duration
and incorporation of prior distributions of duration jointly of HL. We should note that in their experiment, the static and
account for this discrepancy. drifting intervals of a stimuli were concatenated, rathéam

presented simultaneously. Therefore, estimating duratibthe
concatenated stimulus may be viewed as summing the durgtion
Discussion of each short interval during which the stimulus was condtant
drifting or static instead of averaging the durations of seshort
In this study, we rst used a two-alternative forced choiesk intervals. In contrast, the H and L elements in our HL stimsilu
to con rm previous nding that perceived duration is biased were displayed simultaneously. Given the large di erence in the
by the temporal frequency or speed of a visual stimulus. Weemporal structures of the stimuli between the two studiég, t
further asked how the brain forms a representation of dunatio results of the two studies may not be directly comparable.
when two visual stimuli are displayed simultaneously, one of In all of our analyses, the curve tting and modeling were
lower temporal frequency and one of higher temporal frequencyperformed after taking logarithmic transformation of duia.
By both qualitatively testing predictions of di erent modelsda  This was done because the Weber's law in duration perception
guantitatively comparing models based on cross-validabed | (Gibbon, 1977; Buhusi and Meck, 2QGan be easily captured
likelihood, we concluded that the model that best explains thby assuming a constant level of noise on a logarithmic scale
data assumes the duration representation of such joint dtimuof duration. Fitting a Gaussian cumulative function to thatd
is formed by weighting the estimates of duration based orn Experiment 1 and 2 without logarithmic transformation
each stimulus element. However, participants' behavior @oulgenerated qualitative identical results in all the comparsson
not be explained well by the framework of statistically optimacritical to our conclusions. We did not attempt to model the
integration. Instead, they tended to overweight the evaden data of Experiment 3 on a linear scale of duration because
of duration from the stimulus element of higher temporal the assumption that sensory measurements follow a Gaussian
frequency. In addition, we found that the joint e ect of memypor distribution on a linear scale would result in negative dimat
decay and incorporation of prior belief of the distribution$ o estimates, which is meaningless. Additional complexitgtexf
duration can account for a discrepancy between psychometrisne chooses to model in linear scale and to assume that the
standard deviation of the sensory measurement scales wéth th
duration, because the likelihood function cannot be ariafity
described by Gaussian function anymore in such a caselfick
etal., 201

In our experiments, we utilized the illusory phenomenon that
perceived duration is biased by the temporal frequency or speed
of a visual stimuluskanai et al., 2006; Kaneko and Murakami,
2009 to manipulate the length of perceived duration without
changing the physical duration of a stimulus. There still exast
debate on whether the bias is induced by temporal frequency or
speed Kaneko and Murakami, 2009; Linares and Gorea, 2015
Ourresultis independent from the answer to this debate, beeau
the spatial frequency was constant in all stimuli and temporal
frequency was proportional to speed in our experiments. One
may worry that observers could have just used the onsets and
o sets to judge duration in our task. This possibility is not
compatible to our result because purely judging duration base
on the onsets and o sets would not give rise to the di erence
in perceived duration between H and L, or between HL and the
other two types of stimuli.

FIGURE 4 | A model constructed with “decay” and “double-prior s Several hypotheses have been proposed to account for the
hypotheses captures the discrepancy in psychometric curves in uence of temporal frequency or speed on perceived duration.
observn_a_d. in Experiment 1. Shaded areas represent the predicted choice our results may provide constraints to these hypotheses., First
probabtes. one hypothesis was that perceived duration may be based
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on the amount of change in the environmentr@isse, 1963; included such an internal estimation, optimal integratidrosild
Gibson, 1975; Poynter, 1989; Brown, 1995; Kanai et al.)2R06 still predict . min{ y, L} in Experiment 2, which was not
quantitative formalization of this idea in the Bayesian @h®&r re ected in the comparison of JNDs.
framework was recently introduced\(irens and Sahani, 20).1 In Experiment 3, we found that memory decay and
A second hypothesis was based on the observation that stimuticorporation of the prior distributions of duration together
of longer perceived duration, including those of higher temgdo account for the discrepancy in the threshold and slope of
frequencies, typically also elicit larger neural respon$éss psychometric curves corresponding to dierent orders of
hypothesis proposed that perceived duration may re ect thalisplay. The discrepancy in threshold resembles a phenomenon
neural energy expended to encode sensory stinitdiriyadath  sometimes called the “time-order errorHgllstrom, 198% A
and Eagleman, 2007; Eagleman and Pariyadath,)20@8tly, similar discrepancy in the slope of psychometric curves was also
within the traditional “internal clock” framework of time found in many other studies of perceptual judgmenits¢hmias,
perception, another hypothesis proposed that uctuation of2006; Lapid et al., 2008; Bruno et al., 2010, 2012; Ahrens and
neural activity in visual cortex modulated by sensory stimu Sahani, 201)11t was proposed that an implicit standard was used
may play a role in the tick rate of the clock#gnai et al., 2006; in such comparisonNlachmias, 2006; Lapid et al., 200 our
Kaneko and Murakami, 2009 For the hypothesis based on minds, this so-called “implicit standard” or “internal stdard”
amount of changes, our results suggest that perceived duarati plays a similar role as the prior distribution in our “single prio
is not based on the total number of changes in all stimulimodel. In the model by_apid et al. (2008)participants only
Similarly, for the hypothesis based on neural energy, owltes weight the “internal standard” with the sensory evidencehsf t
suggest that the perceived duration is not formed by summingst stimulus but not with that of the second stimulus. In our
the neural response to all stimuli, at least for dynamic stimu models assuming “single prior” and “memory decay,” the decay
Both of these hypotheses can still be valid if we assume thaf memory causes the likelihood function of the rst duration
duration estimates are based on local stimuli and thesenastis to be wider than that of the second. This in turn makes the
are further weighted to form a global representation. For then uence of the prior distribution to the posterior distributio for
hypothesis within an “internal clock” framework, our resalt the rst duration stronger than for the second. This is sianilto
suggest that the clock signals may come from distributedce®i  giving more weight to the “internal standard” when calcinat
in sensory cortex and the tick counts from each source may ba weighted average of the “internal standard’ and the sensory
fused by weighted average. In contrast, if one assumed thereestimate of duration. Our modeling resulFigure 3F suggests
only one centralized clock, it would be di cult to explain the that such discrepancy due to the order of display may re ect an
di erence in INDs when participants compare di erent types of optimal strategy to integrate sensory evidence with priordielf
stimuli. Although our “weighting” hypothesis resembles fipérit  the structure of the task. A similar model was recently propose
of cue integration in the Bayesian observer model, the “opttimao account for an order e ectin a task of discriminating lehgtof
integration” hypothesis did not provide the best account for o bars @shourian and Loewenstein, 20Q1The fact that a common
data. mechanism can account for related phenomena in both spatial
Note that our implementation of the “optimal integration” and timing tasks indicates that similar inference stragsginay
hypothesis in Experiment 3 made some simplifying assumptionse used in various domains of perceptual tasks. Here we give an
compared to the modeling framework ofhrens and Sahani intuitive explanation of why the prior distributions and mempor
(2011) First, in their paper, the likelihood of duration was decay jointly causes the e ect of the displaying order, takimg t
calculated as the probability of observing the changes tegtwe “double priors” hypothesis as an example. Under this hypothesis,
several samples in a dynamic luminance signal by assumirige brain separately calculates the posterior probabilitiethef
the signal follows the temporal statistics in natural scefs rstduration being longer/shorter than the second basedsach
simulating this calculation one can obtain the biases of@gesrd  hypothetic order of display, and averages these probabilities t
duration due to di erent temporal frequencies. We did not usemake the nal judgment. To calculate the posterior probalmsiti
this approach to predict the biases because we found that thad the relation between the durations, the brain needs toudate
bias depends on free parameters such as the number of samplié& posterior probabilities of the duration of each stimullibe
sampling rates, and the contrast of stimuli compared to that oprior distribution learnt from the comparison durations is mhic
luminance signals in natural scene. Instead, we simply asdum atter than that learnt from the standard duration, and isubk
the biases and standard deviations of the sensory measuotemeless informative. Because it is less informative, it hasllema
of duration are free parameters for each participant. Thisontribution to the posterior distribution no matter if it is sed
simpli cation should not in uence our conclusion as long ds¢  to infer the duration of a standard stimulus or of a comparison
distribution of sensory measurements predicted by simotati stimulus. On the contrary, the prior distribution correspomdj
their model approximates a Gaussian distribution. Seconthen to the standard duration is more concentrated and thus more
model of Ahrens and Sahani's, there was an additional sourdeformative. But it is only bene cial to the accuracy of judgnt
of duration estimation purely based on internal neural aityiv when it is used to calculate the posterior distribution of the
independent from the sensory inputs. We did not include thisduration for a stimulus that is actually the standard stimnsll If
internal estimation in our models because it was shown thait is used to calculate the posterior distribution of a comparison
this internal estimation was not crucial to the predictions o stimulus, it “drags” the mass of the posterior distribution ten
their model @hrens and Sahani, 20).However, even if we had the standard duration, which makes the judgment more di ¢ul
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On the other hand, the relative contribution of the prior of the H and L elements may be too large for participants to
distribution to the posterior distribution also depends oneth integrate them on some trials. Future studies that systerabyi
shape of the likelihood function of duration. The prior has manipulate the temporal frequencies of the two stimuli may
relatively stronger impact on the posterior if the likelihoggl help answer whether causal inference is the major cause of
atter (less informative). This is the case for a stimulusath the apparent sub-optimality in combining duration estimatés.
appears rstin a trial, due to the decay of memory. Thereforesecond possibility is that the stimuli used are not common in
in the trials of which the rst stimulus is the standard stifus, the natural environment and the brain may have a wrong belief
the prior distribution corresponding to the standard duratio about the precision of duration estimation based on each tyfpe o
provides larger bene t for estimating the posterior distriln  stimulus. Third, the H element may draw more attention than
of the standard duration but generates less “dragging” e@tt the L element, and the reliability of duration estimation yriae
the posterior distribution of the comparison stimulus. In the changed due to di erent levels of attention. Lastly, it is pbkes
trials of which the rst stimulus is the comparison stimulube  that participants may have insu cient knowledge of some task-
“dragging” e ect is stronger for the comparison stimulus bbet relevant information. For example, they may have learnt a
bene t is weaker for the standard stimulus. This explains whywrong prior distribution, which may translate to apparent sub-
the psychometric curve is steeper when the standard stimulugptimality. These possibilities all call for future investiga. We
appears rst. believe that our approach of manipulating perceived duration can
One may worry that the order e ect may be caused by lowebe further extended in studying many questions related te th
uncertainty of the location of the second stimulus than tbéthe  integration of duration estimation.
rst. Because the e ect of the order of display is observed imgna In our experiments, we only manipulated the bias of
other studies which do not manipulate the location of stimadi  perceived duration by temporal frequency, but did not attempt
we do, we think the di erence in uncertainty of the position of to manipulate the precision of the perceived duration. The
the stimuli is unlikely the major cause of the order e ect. di erence in the precision of duration estimates of H and L were
Observers' behavior in cross-modality cue combinatiorksas inherent to each participant. This re ects another limitatian
of many spatial features can often be well described by titally  studying cue combination in time perception: to our knowledge
optimal integration or appear close to optimalitygcobs, 1999; there are few, if any, manipulations of visual stimuli that
Ernst and Banks, 2002; Battaglia et al., 30Bfwever, it is can independently in uence the magnitude and precision of
puzzling that behavior in cue combination tasks of duratian o perceived duration (although seé¢aricher-O'Brien et al., 2014
other temporal features often deviates from optimality in onewhere the precision of perceived duration of auditory stinwgis
way or another Burr et al., 2009; Shi et al., 2010; Hartcher-manipulated by the signal to noise ratio of a tone). It is stiigjkely
O'Brien and Alais, 2011; Tomassini et al., 201Are brains unknown what determines the precision of duration estimation
simply suboptimal when it comes to time? It is di cult to give of di erent types of stimuli, such as the H and L stimuli in our
a comprehensive explanation of the sub-optimality; we can onlgxperiments. Understanding how and why variability of duoati
provide some speculations. The rst possibility is the role ofperception changes with di erent stimulus features may provide
causal inferencek(ill, 2003, 2007; Kording et al., 2007; Shamsnsights into the mechanism by which duration is estimated
and Beierholm, 2010 the brain not only needs to integrate based on sensory signals. Quantifying the statistics ofrahtu
di erent cues to form a more reliable estimation, but also dee scenes and deriving the optimal encoding and decoding gjyate
to infer which of the cues may be generated by a dierenthas been a fruitful approach in generating models for how the
cause and should not be integrated. When two cues con icbrain might solve spatial perception tasks. The performances of
too much or their relation violates some constraints, thaibr such models often highly resemble the performance of human
should not integrate them but should instead treat them a®bserversGeisler et al., 2009; D'Antona et al., 2013; Burge and
from dierent sources. In spatial cue integration tasks, theGeisler, 201} Only a few studies in time perception have taken
temporal contingency between cues provides a strong clue thtitis perspectiveAhrens and Sahani, 20).1We speculate that
the cues may be generated from the same source. Unfortunatefurther analysis of the statistical structure of temporal sign
in order to study duration cue combination, researcherenft in natural environments may identify the optimal strategy to
have to make the physical durations of the stimuli di erent estimate time based on natural signals and provide ways to
(Hartcher-O'Brien and Alais, 2011; Ayhan et al., 2D1Phis  understand the variability in duration judgments.
creates asynchrony in onset and o set time between stimuli,
which provides a strong clue that they should not be integiate Data Analysis and Modeling
In fact, Ayhan et al. (2012Jound a poorer performance when
judging the average duration of multiple asynchronous sfimu Experiment 1
than when judging the duration of a single item. They alsofdu We tted each participant' responses by psychometric functions
no signi cant di erence between judging two items and judgin with shapes following Gaussian cumulative distribution. Tria
eightitems. Itis possible that when stimuli are asynchrasnidhie  of both orders of display belonging to the same condition were
brain does not perform weighted average but randomly selectseated equally when tting a psychometric function to them.
one stimulus to estimate duration. Our use of temporal frage For trials in the LvsH condition, we denote bl the
to bias perceived duration avoided this asynchrony. Howeter logarithmic transformation of the physical duration of the
is still possible that the di erence between the durationmesties comparison stimulus on théh trial. Similarly, for trials in the
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HvsL condition, we denote hty the logarithmic transformation Experiment 2
of the physical duration of the comparison stimulus on title = The procedure of tting parameters of psychometric functions
trial. We assume that the probability of a participant's resgonswas similar to that in Experiment 1. The bias teringsy and
ri:L for theith trial of the LvsH condition is bhvs. were replaced bl , by, andby, corresponding to the bias
of the perceived duration of each type of comparison stimulus
relative to that of the reference stimulus (in the log scale o
p ri;L D "longer" ti..; brysH;  LvsH; duration). The JND terms |ysy and s Were replaced by,
1 H, and p for each condition.
D .1 /8 tLCbysHltrer; LvsH C > 9 )
Experiment 3
Generative Model
p ri:.L D "shorter" ti.;brysH, LvsH; Participants' judgments were considered as an inference psoce
(10) In Figure 3B, we illustrate an example of the generative models
which we assume this inference process may be based on if the
brain considers the full structure of the task. On each fral
binary variableO determines the order in which the stimuli
of di erent durations are displayed to the participant. With
P ri:y D "longer” tiy; brvsl HusL probability of 0.5, the reference stimulus is displayed before
1 the comparison stimulus (we denote this kyD “r-c”). With
> (11) probability of 0.5, the comparison stimulus is displayed before
the reference stimulus (we denote this ByD “c-r”). ti, the
true duration of the rst stimulus, andt,, the true duration
p ri:uD "shorter" ti:y; bLysH; HvsL of the second stimulus, are sampled from the corresponding
distributions of reference stimulus and comparison stimulus
Figure 3Cillustrates this sampling process. The brain does not
where is the probability that the participant would make have acgess to the ord®@ror the true duratiqnﬁl andt,. Instead,
random guess (lapse rate, common for both conditiotg)sn |t_has noisy neural measurements of durations that can vamf
is the bias of perceived duration of stimulus L relative to H intfial to trial. We denote these measurementsdyandx,. Here,
the LvsH condition (in the log scale of duratioriys. is the ¢ andxare both in logarithmic scale of duration. .
bias of perceived duration of stimulus H relative to L in the [N the cases that the stimulus type in duratigi D 1, 2) is
HvsL condition; Lystiand mystre ect the sensitivity to duration  H or L, we assumed that the distribution gffollows a Gaussian

di erence in the two conditions (JND on the logarithmic scale o distribution on the logarithmic scale of duration. The meafithe

D1 pri.D"longer" t.;biysH; LvsH;

Similarly, we assume the probability of respongg for the ith
trial of HvsL condition is

D.1 /8 tnC Prvs! trefi HvsL C

D1 priuD "longer" tin;bhvsL: HysL; (12)

duration).8 () is Gaussian cumulative distribution function. distribution is biased by the corresponding stimulus type H.or
We assumed the responses are independent between trials.2S described in Equations (1) and (2). o _
The likelihood of the parameters L bpyk; In the case that the stimulus type in duration(i D 1, 2) is

Lush: BrvsL:  HusL: D p(data jbius; Lvst; Prvsl: Hvsl ) HL, one_noisy mt_easurement is generated based on each element
could then be calculated by the product of the probability OfoleL. Figure 3B'|Ilust.rates an example of such a case when the
response for each trial: stimulus of duratiort, is HL. We denote the measurements based
on the two elements of HL byo = {X2.H, X2:.L}. We assumed
that the distribution of duration measurement based on each
element is the same as when only that element is displayed, and
independent from each other:

L brysH; LvsH; BHvsL  HvsLs
D p data bpvsH; LvsH; BHvsL  HusL

W
D P riiL  ti; bsH  LvsH; Xch Nt Cby; B) (iD12) (14)
‘D1 xii Nt Ch; & (iD12) (15)
W
P rin  tiH; Prvs  HsLs (13) Inference Process
iD1 The brain only has accessitpandx,. What participants reportis

) ) . . their belief of the relation betwedn andt,, denoted by decision
where N is the number of trials in each condition. For,iaplep (D D 0 meang; > t andD D 1 means; < to).
each participant, we tted all the parameterfivsi, The process of generating a response atidutased on noisy
BrvsL,  Lusth  Husl, @nd  simultaneously to maximize ,pseryationsg andx; is the inference process that we modeled.

L busH, LvsH; brvsL, HusL, » using the “fmincon” function in We assumed that the brain estimates the posterior
Matlab. Since the curve tting was performed after logaritem yistributions of stimulus durationst; and t, based onx;
transformation of duration, the bias termbyysy and bpyse

andxy:
represent duration distortion in the logarithmic scale. Weeh 2 )
LvsH HVSL . . ; . it ,
calculat.edefb vsH and e’Hvsk as the duration distortion ratio o(tijx;) D D(Xultl)l p(t.); (iD12) (16)
plotted in Figure 1C p(xi)
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The posterior distribution is proportional to two factorg(tj), the integration ovex;. For a value ok; chosen as the abscissa
the prior distribution oftj, andp(x; |ti), the likelihood oft;. The in the integration, the value ok that satisesp(D D O [xi,
former is a participant's belief of the general distributiohtbe  x2) D p(D D 1 [x1, x2) was found by numerical search. The step
duration in the experiment without any sensory evidence. Thdunction H() is 1 on one side of this value g and 0 on the
latter is the probability that any particulds can generate the other side. Therefore, the integration overwas calculated based
sensory measuremexit, regardless of the prior belief. on the cumulative distribution function gp(x; |t2) at this value
Based omp(t; |xi), the brain further calculates the posterior of xy.
probability of the decision variable:

Model Comparison

E-D D Oile: X2l D p.t1>12] Xg; %o/ Our goal was to understand how the brain forms a duration
c1 t representation when multiple stimuli, each providing con iogj
D evidence of duration occur simultaneously. In our modeling

dty diop.t1j xa/ p.taj xof 17)
! ! framework, the process of forming duration representation

based on multiple stimuli is the process of calculating the
likelihood of a durationt when the stimulus is HL. Thus, one

E-D D 12' x1; X2/ D p.ti<ta ] xq; xo/ major di erence between the models under consideration is
cl t2 . . in their likelihood function p(xi:, Xi:n |ti) (i D 1;2), when
b dtz 1 dwp.taj xi/p-tz] Xl (18 " tne stimulus int; is HL and separate sensory measurements

Xi;.L and x4 are formed. In addition, we also aimed to
If p(D D OJx1, X2) > p(D D 1[x1, X2), the participant reports understand the discrepancy observed in the psychometricasurv
t1 as being longer, otherwise he/she repdstas being longer. If corresponding to di erent orders of displaying the reference
Equations (17) and (18) are expanded by plugging in Equatioand comparison stimuli. We considered two possible causes for
(16), we notice thap(x1)p(x2) is shared in both the formula of the discrepancy: the sensory measurement of the rst duratio
p(D D OJx1, x2) andp(D D 1[x1, x2). Therefore, the termp(x;) on a trial may be degraded more than that of the second

andp(x2) can be ignored in making judgment abobt due to decay of memory, and participants may incorporate
. N the prior belief of duration distribution into their inferere
Choice Probability process.

While the inference process described above is deterngnisti Therefore, we constructed models based on three factaes: th
x1 and xz, the measurements of duration based on certainikelihood function of duration when the stimulus is HL, wiher

neural processes in the visual pathway are stochastic. Tirey G@emory decay exists, and how participants incorporate prior
vary from trial to trial even if the physical durations are the belief of stimulus duration during inference.

same. In our modeling, this variation was the major source of

variability in participants' judgments. We did not make speri |jkelihood function

assumption on howx; andx; are generated. We only made the The form of the likelihood function of duration t when the
simple assumption that their distributions follow Equatiory (  stimulus is H or L is shared among all models. As the distribuitio
and (2). In order to calculate the probability that a participan of measurement has a constant level of noise over the range of
makes a certain judgment on a trial, we integrated over the (on log scale), a reasonable assumption is that the likelihood

space of distribution ofx; and x; where the corresponding function follows the shape of Gaussian function with the same
judgment should be made according to the above decision rulgtandard deviation as the level of noise:

In addition, similarly as in Experiment 1 and 2, we included a

lapse rate term which describes the probability that a partitipa

fails to pay attention to the stimuli and makes a random L.t/ D p(xijt;) D
guess. The choice probability thus takes the following form:

N(xj; n); if H stimulus is displayed
N(xi; L); if L stimulus is displayed

(20)
8 Reg Reg Co Dy
5 3 Cc.1 / 1 dxq 1 dxoH pv;» .DD 1j X1;%2/  pwm:».DD 0j Xq; Xof
. o Xaj t1/ pmer X2 ] tof 5 if r D "tpis longer”
W rjtit D Rm:" Xl fal P _ _ 19
pmv:.r] tg; to 3 % c.1 / fl dxq fl dxoH pwv:.DD 0j X1; X2/ pm:».D D 1j Xq; Xof (19)

Pm:r X1t/ pwme X2 ] tof ; if r D "tz is shorter"

In the above equatiom, is the judgmentM indicates the model In the above equation, we also assumed that the bihges
under consideration. represents all the free parameters of modebnd by in the distributions of x4 or x_, as in Equation
M. H() means a step function which outputs 1 only when the(1) and (2), are not accessible by the brain at the inferring
inputis larger or equal to 0 and outputs 0 otherwisés the lapse stage. This assumption and the di erence betwdgnand b,
rate. explain why H is judged as longer than L in our modeling
An analytic form of the choice probability does not exist asframework.
function of t; andt,. To calculate the integral numerically, we  The likelihood function of duratiort when the stimulus is HL
used a Gaussian—Hermite quadrature of order 7 to approximatei ers between models.
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In models assuming the “weighting” hypothesis, we assumilemory decay
that the brain rst weights the two sensory measurements ofn order to make a comparison of duration, participants need
duration by Equation (3). The likelihood function dfis then to hold the memory of the duration of the rst stimulus until

calculated based oy : making judgment. At the time of making judgment, more
time had elapsed since the rst stimulus than since the second

p XiXiw G D Lweighting'ti/ stimulus. It is possible that the representation of duration of
the rst stimulus was more variable than that of the second
q stimulus due to decay of memory. Therefore, the second facto

. . - 2 2 2
D N(til wixin C (1 wh)xin: W Z4C( wi)® 2) (21)  that we consider in constructing models is whether the stamd

deviation ofx; increases compared @ due to memory decay.
In models assuming the “decay” hypothesis, the standard
deviation of the distribution ok, is scaled up by a constant

We modeled the standard deviation of the likelihood funatis
in the above equation because it matches the standard daviat

of the distribution of xy_ following the weighting scheme in : ;
(m> 1) relative to that ofx, of the same type of stimulusn

Equation (3). \ ‘
In models assuming the “optimal integration” hypothesis, aS & free parameter common to all stimulus types. The standard

stronger version of the “weighting” hypothesis, the liketid deviation of the likelihood function of the rst duratiomy is also
is the product of the likelihood of based on each individual Scaled up byn. , ) ) _ ,
stimulus element. which amounts to: In models assuming the “no decay” hypothesis, there is no
di erence in the standard deviation of the distributionsxf and
P XiXi:H ti D Loptimar-ti/ DN Xy 1 N XiLs L X2, which is equivalent to xingnas 1.

In models assuming the “selection” hypothesis, the likedtho Incorporation of prior distribution
function is based only on the stimulus element that is seléct The distribution of duration presented in the experiment
to estimate duration: was not uniform. It is possible that the brain can gradually
%X t DL . learn the distributiqn of duratiqn as the experiment cont@
P XXin i selection- ™ Furthermore, as illustrated inFigures 3B,G the physical
N Xi;H; H ;if stimulus His selecte, 9y durations of the two stimuli in any trial were sampled from
N XL, L .ifstimulus L is selecte two di erent distributions with random orders. The brain mig
further learn this structure. Therefore, we considered éhre

I_n ’T‘Ode's assuming the “reliable S“m”'”s hypothesis, .thedi erent hypotheses of how the brain might form a belief of the
likelihood function is based on the stimulus element WhlchPriordistribution of duration

the participants has a smaller standard deviation in his/he In models assuming the “at prior’ hypothesis, the brain

estimation of duration: does not learn any distribution from the experiment but ireste
assumes any duration is equally possible to occur for both the
rst and second stimuli. This is equivalent to saying thaeth
(23) posterior of duration is the same as the likelihood of duratipft
[xi) D p(xi |ti). The generative model assumed by the brain would

In models assuming the “weighting” “optimal integratiom} be without the parameter of displaying ord@rin Figure 3B.

P X LXi;H ti D Lreliable stimulus ti/
N XiH, 1o If g< L

D N X L if v> L

“reliable stimulus” hypothesis, the likelihood functionrche In models assuming the “single prior” hypothesis, the brain
plugged into the inference process and the choice probabiity ¢ forms a belief that all stimulus durations are sampled frora th
be calculated for each combination of model parameters. same distribution, which is the mixture of the distributior the

In models assuming the “selection” hypothesis, if the refeee reference and comparison duration. Note that it is impossible
stimulus is HL and the comparison stimulus is H or L, then thefor participants to learn the exact distribution of the physical
two choice probabilities, corresponding to either H or L eleme duration, because of the noise in sensory measurement of
being selected from the reference stimulus, are rst cald by —duration, and because H and L type of stimuli cast di erent s
plugging the likelihood function corresponding to that stifos O the measurements. Therefore, the prior distribution lédy
being selected into the inference process. Then these piilezbi the brain should be a smoothed version of the true distribatio
are further multiplied by the probabilities of H or L being FOr simplicity, we assume that the prior distributiqn(ti) in
selected and summed together, to calculate the expectedechofFduation (16) takes the form of the convolution of a Gaussian

probability for a given trial. kernel with the mixture of distributions of the true duratioof
both the reference and comparison stimuli.
p.rjtity; ;M/ D pselectn-Fj t1;t2; ; M/ cy In models assuming the “double priors” hypothesis, the

CPselect LT J i t2; M/ (1 o4)(24) brain learns the correct generative model asrigure 3C that
durations are sampled from two distributions and a top-level
If the comparison stimulus is also HL, then the equation aboveariableO determines the order in which the two durations are
is used to rst calculate the choice probabilities of eithepHL ~ drawn from these distributions. In order to account for both
element being selected from the comparison stimulus. They athe possible orders of display, the brain separately calcullages t
further multiplied bycy and 104 and summed similarly. posterior probabilities of the decision varialilebased on each
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possible orde©®, and marginalize oveD by taking the average of
these two probabilities:

p ti>t2  Xp; x2; OD "c-r"
Cp ti>ty Xq1;%;0D "r-c"

p.DD O0j x1; %2/ D 5 (25)
p t1<tz X1;X%2; OD "c-r"
Cp ti<ty X1;%X2;OD "r-c"
0.DD 1] xq:xo/ D —— P =12 21 2 (26)
In the above equations, p.t1> t2] x1;%2; O/ and

As described above, we considered three factors: the meshani
of combining duration estimates based on simultaneous &iim
the existence of memory decay, and the form of prior
distribution. Each combination of these three factors gates
one model. We compared 24 models (2 3)in total based on
cross-validated log-likelihoods of the modelsi( den Berg et al.,
2019. We rst separated the trials of each participant into 12
subsets. Each subsets contained approximately an equal numbe
of trials belonging to each condition and each order of display
(we say “approximately” because the total number of trialis n
a multiple of 12). Then for each model, we performed 12-fold
cross validation. In each case, we left one subset of tridlea®
testing data. Trials of the other 11 subsets were treatadiasig
data. We tted the model to the training data by searching

p.t1 < t2] x1;x2; O/ were calculated similarly as in Equation for a combination of parameters that maximizes the product

(17), except that the posterior probabilitiestpindt, depend on
the variableD. We named the prior probability of the duration of
the comparison stimuli byc(t), and that of the reference stimuli
by pr(t). The posterior probabilities df andt, corresponding to
the two orders of display are:

Pe(ta)p(Xajta) .
p(x1)
pr(t2)p(x2jt2)
p(x2)
pr(t1)p(xajta) .
p(x1)
Pe(t2)p(X2jt2)
p(x2)

p(t1jx1; X2; O D "c-r")D

p(t2jx1; X2; O D "c-r")D 27)

p(t1jX1; X2; O D "r-c") D

p(t2jxq; X2; O D "r-¢c") D (28)

References

Aaen-Stockdale, C., Hotchkiss, J., Heron, J., and Whitaker2@.1). Perceived
time is spatial frequency dependentision Res.51, 1232-1238. doi:
10.1016/j.visres.2011.03.019

Ahrens, M. B., and Sahani, M. (2011). Observers exploit sttichamdels of
sensory change to help judge the passage of @@uoe. Biol.21, 200-206. doi:
10.1016/j.cub.2010.12.043

Ashourian, P., and Loewenstein, Y. (2011). Bayesian inferemclerlies the
contraction bias in delayed comparison task.o0S ONE6:e19551. doi:
10.1371/journal.pone.0019551

Ayhan, I., Bruno, A., Nishida, S., and Johnston, A. (2009 $patial tuning of
adaptation-based time compressidnVis9, 2.1-12. doi: 10.1167/9.11.2

Ayhan, I., Bruno, A., Nishida, S., and Johnston, A. (2011gdE of the luminance
signal on adaptation-based time compressidn.Vis.11:22. doi: 10.1167/
11.7.22

Ayhan, ., Revina, Y., Bruno, A., and Johnston, A. (2012). Bomgudgments over
multiple elementskront. PsychoB:459. doi: 10.3389/fpsyg.2012.00459

Battaglia, P. W., Jacobs, R. A., and Aslin, R. N. (2003). Bayiestgration of visual

of the choice probabilities over all trials in the trainingtda
Then with parameters tted to the training data, we calcuthte
the log-likelihood of the testing data as the logarithm of the
product of the choice probabilities over all trials in the tegt
data. The sum of the log-likelihoods of the testing data over
the 12 instances of cross-validation is the cross-valitétg-
likelihood of the model being compareligure 3Dillustrate this
procedure.

Acknowledgments

We would like to thank Dr. Wei Ji Ma for the discussion of
Bayesian modeling and Dr. Yael Niv for the suggestion on model
comparison.

Bruno, A., Ayhan, |., and Johnston, A. (2012). E ects of tempdealtures and
order on the apparent duration of a visual stimul#ont. PsychoB:90. doi:
10.3389/fpsyg.2012.00090

Buhusi, C. V., and Meck, W. H. (2005). What makes us tick? Fanatiand
neural mechanisms of interval timingNat. Rev. Neuroscg, 755-765. doi:
10.1038/nrn1764

Burge, J., and Geisler, W. S. (2014). Optimal disparity estimatioatural stereo
imagesJ. Vis14:1. doi: 10.1167/14.2.1

Burr, D., Banks, M. S., and Morrone, M. C. (2009). Auditory domicarover
vision in the perception of interval duratiorExp. Brain Resl98, 49-57. doi:
10.1007/s00221-009-1933-z

Carrozzo, M., and Lacquaniti, F. (2012). E ects of speeding uglaving down
animate or inanimate motions on timingexp. Brain Res224, 581-590. doi:
10.1007/s00221-012-3338-7

D'Antona, A. D., Perry, J. S., and Geisler, W. S. (2013). Humans melent use
of natural image statistics when performing spatial interpolatibrivis.13:11.
doi: 10.1167/13.14.11

Eagleman, D. M. (2008). Human time perception and its illusionstrCOpin.
Neurobiol 18, 131-136. doi: 10.1016/j.conb.2008.06.002

and auditory signals for spatial localizatiah.Opt. Soc. Am. A Opt. Image Sci. Eagleman, D. M., and Pariyadath, V. (2009). Is subjective duratisignature of

Vis.20, 1391-1397. doi: 10.1364/JOSAA.20.001391
Birngruber, T., Schroéter, H., and Ulrich, R. (2014). Duration peraaptf visual

caoding e ciency?.Philos. Trans. R. Soc. Lond. B Biol. 384, 1841-1851. doi:
10.1098/rsth.2009.0026

and auditory oddball stimuli: does judgment task modulate the temporalErnst, M. O., and Banks, M. S. (2002). Humans integrate visual reaytic

oddball e ect?Atten. Percept. Psychophy8, 814-828. doi: 10.3758/s13414-

013-0602-2

Brainard, D. H. (1997). The psychophysics toolb®gat. Vis10, 433-436.

Brown, S. W. (1995). Time, change, and motion: the e ects of dtimmovement
on temporal perceptiorPercept. Psychoph§g, 105-116.

Bruno, A., Ayhan, |., and Johnston, A. (2010). Retinotopiqaaton-based visual
duration compression]. Vis.10:30. doi: 10.1167/10.10.30

information in a statistically optimal fashionNature 415, 429-433. doi:
10.1038/415429a

Fraisse, P. (1963Jhe Psychology of Timdew York, NY: Harper & Row.

Geisler, W. S., Najemnik, J., and Ing, A. D. (2009). Optimal stiselucoders for
natural tasksJ. Vis9, 17.1-16. doi: 10.1167/9.13.17

Gibbon, J. (1977). Scalar expectancy theory and Weber's lawirmabtiming.
Psychol. Re84, 279-325.

Frontiers in Psychology | www.frontiersin.org

17

August 2015 | Volume 6 | Article 1041



Cai and Eagleman

Duration estimates are integrated sub-optimally

Gibson, J. J. (1975). “Events are perceivable but time is ndtiérstudy of Time ]I
eds J. T. Fraser and N. Lawrence (Berlin; Heidelberg; New York, NYig&yyi
295-301.

Girshick, A. R., Landy, M. S., and Simoncelli, E. P. (2011). @atdiles: visual
orientation perception re ects knowledge of environmental stats Nat.
Neuroscil4, 926—32. doi: 10.1038/nn.2831

Grondin, S. (2010). Timing and time perception: a review of recehabioral and
neuroscience ndings and theoretical directiodgten. Percept. Psychophga,
561-82. doi: 10.1038/nn.2831

Hartcher-O'Brien, J., and Alais, D. (2011). Temporal ventriloquisna purely
temporal contextJ. Exp. Psychol. Hum. Percept. Perf@m1383-1395. doi:
10.1037/a0024234

Hartcher-O'Brien, J., Di Luca, M., and Ermnst, M. O. (2014).
duration of uncertain times: audiovisual information about intals is
integrated in a statistically optimal fashiorPLoS ONE9:e89339. doi:
10.1371/journal.pone.0089339

Hellstrom, A. (1985). The time-order error and its relatives: mirrors ofratige
processes in comparingsychol. BulB7, 35-61.

Holm, S. (1979). A simple sequentially rejective multiple test proce@gand. J.
Stat.6, 65—70.

Ivry, R. B., and Schlerf, J. E. (2008). Dedicated and intrinsidetsoof time
perception.Trends Cogn. Sdi2, 273-280. doi: 10.1016/j.tics.2008.04.002

Jacobs, R. A. (1999). Optimal integration of texture and motioascto depth.
Vision Res39, 3621-3629.

Johnston, A., Arnold, D. H., and Nishida, S. (2006). Spatially Ipedldistortions
of event timeCurr. Biol.16, 472—-479. doi: 10.1016/j.cub.2006.01.032

Kanai, R., Paen, C. L., Hogendoorn, H., and Verstraten, F. AOG0Time
dilation in dynamic visual displayl. Vis 6, 1421-1430. doi: 10.1167/6.12.8

Kaneko, S., and Murakami, I. (2009). Perceived duration oflisiotion increases
with speedJ. Vis9:14. doi: 10.1167/9.7.14

Kass, R. E., and Raftery, A. E. (1995). Bayes fadtgkm. Stat. Asso@0, 773-795.
doi: 10.1080/01621459.1995.10476572

Kleiner, M., Brainard, D., and Pelli, D. (2007). Whats new in Rsyalbox-3?
Perceptior36. ECVP Abstract Supplement.

Kline, S. R., and Reed, C. L. (2013). Contextual in uencefnoédsion, speed, and
direction of motion on subjective time perceptioAtten. Percept. Psychophys.
75, 161-167. doi: 10.3758/s13414-012-0370-4

Knill, D. C. (2003). Mixture models and the probabilistic structure epth cues.
Vision Res43, 831-854. doi: 10.1016/S0042-6989(03)00003-8

Knill, D. C. (2007). Robust cue integration: a Bayesian modeleadience from
cue-con ict studies with stereoscopic and gure cues to sldni/is.7, 5.1-24.
doi: 10.1167/7.7.5

Knill, D. C., and Pouget, A. (2004). The Bayesian brain: the rolencertainty
in neural coding and computationTrends Neurosci27, 712-719. doi:
10.1016/j.tins.2004.10.007

Kérding, K. P., Beierholm, U., Ma, W. J., and Quartz, S. (2007)s&lanference in

The Poynter,

Long, G. M., and Beaton, R. J. (1981). The e ects of stimulus masity, retinal
location, and rod contrast on perceived duration of brief visumhsti. Percept.
Psychophy29, 389-394. doi: 10.3758/BF03207349

Merchant, H., Harrington, D. L., and Meck, W. H. (2013). Neural ibas the
perception and estimation of timeAnnu. Rev. NeuroscB6, 313-336. doi:
10.1146/annurev-neuro-062012-170349

Nachmias, J. (2006). The role of virtual standards in visual dignation. Vision
Res46, 2456-2464. doi: 10.1016/j.visres.2006.01.029

Pariyadath, V., and Eagleman, D. (2007). The e ect of predictgluhi subjective
duration.PLoS ONE2:e1264. doi: 10.1371/journal.pone.0001264

Pelli, D. G. (1997). The VideoToolbox software for visual psyclysjus:
transforming numbers into movieS§pat. Vis10, 437-442.

D. (1989). Judging the duration of time
process of remembering segments of experienAely.
305-331.

Schindel, R., Rowlands, J., and Arnold, D. H. (2011). The oddbatiteperceived
duration and predictive codingl. Vis11:17. doi: 10.1167/11.2.17

Shams, L., and Beierholm, U. R. (2010). Causal inference in pemeptiends
Cogn. Scil4, 425-432. doi: 10.1016/j.tics.2010.07.001

Shi, Z., Chen, L., and Mdller, H. J. (2010). Auditory temporal modatatf the
visual Ternus e ect: the in uence of time intervadtxp. Brain Re203, 723-735.
doi: 10.1007/s00221-010-2286-3

Singh, K. D., Smith, A. T., and Greenlee, M. W. (2000). Spatioterhfreuency
and direction sensitivities of human visual areas measured ufifigl.
Neuroimagéd 2, 550-564. doi: 10.1006/nimg.2000.0642

Tomassini, A., Gori, M., Burr, D., Sandini, G., and Morrone, M. @011).
Perceived duration of visual and tactile stimuli depends on peeckspeed.
Front. Integr. Neurosc:51. doi: 10.3389/fnint.2011.00051

Treisman, M. (1963). Temporal discrimination and the indi erenceterval.
Implications for a model of the “internal clock.Psychol. Monogr77,
1-31.

Tse, P. U., Intriligator, J., Rivest, J., and Cavanagh, P. Y2@@#ntion and
the subjective expansion of tim@ercept. Psychophygs, 1171-1189. doi:
10.3758/BF03196844

van den Berg, R., Awh, E., and Ma, W. J. (2014). Factorial conoparis
of working memory modelsPsychol. Revl21, 124-149. doi: 10.1037/a00
35234

van Wassenhove, V., Buonomano, D. V., Shimojo, S., and Shan{20Q8).
Distortions of subjective time perception within and across ssr3LoS ONE
3:e1437. doi: 10.1371/journal.pone.0001437

Wichmann, F. A., and Hill, N. J. (2001). The psychometric functianFitting,
sampling, and goodness of tPercept. Psychophy&3, 1293-1313. doi:
10.3758/BF03194544

Xuan, B., Zhang, D., He, S., and Chen, X. (2007). Larger stimuludgefl to last
longer.J. Vis7, 2.1-5. doi: 10.1167/7.10.2

intervals:
Psychol. 59,

multisensory perceptiorPLoS ONR:e943. doi: 10.1371/journal.pone.0000943Con ict of Interest Statement: The authors declare that the research was

Lapid, E., Ulrich, R., and Rammsayer, T. (2008). On estimating theedice limen
in duration discrimination tasks: a comparison of the 2AFC and thaireler
task.Percept. Psychophy®, 291-305. doi: 10.3758/PP.70.2.291

Linares, D., and Gorea, A. (2015). Temporal frequency of event®mratian
speed dilates perceived duration of moving obje8si. Rep5:8825. doi:
10.1038/srep08825

Long, G. M., and Beaton, R. J. (1980). The contribution ofalipersistence to
the perceived duration of brief targeercept. Psychophg8, 422—-430. doi:
10.3758/BF03204886

conducted in the absence of any commercial or nancial relatigps that could
be construed as a potential con ict of interest.

Copyright © 2015 Cai and Eagleman. This is an open-access digidleuted

under the terms of the Creative Commons Attribution Licé@€eBY). The use,
distribution or reproduction in other forums is permittedpyided the original
author(s) or licensor are credited and that the originallipation in this journal

is cited, in accordance with accepted academic practicasd\dlistribution or
reproduction is permitted which does not comply with theesest

Frontiers in Psychology | www.frontiersin.org 18

August 2015 | Volume 6 | Article 1041



