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Ming Bo Cai and David M. Eagleman *
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Perceived duration can be in�uenced by various properties of sensory stimuli. For
example, visual stimuli of higher temporal frequency are perceived to last longer than
those of lower temporal frequency. How does the brain form a representation of duration
when each of two simultaneously presented stimuli in�uences perceived duration in
different way? To answer this question, we investigated theperceived duration of a pair
of dynamic visual stimuli of different temporal frequencies in comparison to that of a
single visual stimulus of either low or high temporal frequency. We found that the duration
representation of simultaneously occurring visual stimuli is best described by weighting
the estimates of duration based on each individual stimulus. However, the weighting
performance deviates from the prediction of statisticallyoptimal integration. In addition,
we provided a Bayesian account to explain a difference in theapparent sensitivity of the
psychometric curves introduced by the order in which the twostimuli are displayed in a
two-alternative forced-choice task.

Keywords: duration perception, cue integration, memory deca y, Bayesian inference, temporal frequency, time
order error, just noticeable difference

Introduction

Estimating how long an event lasts is a perceptual capacity thatwe utilize in daily life. For
example, we distinguish words with similar sounds, such as “sheep” and “ship,” based on the
duration of a syllable; a salesman can infer a customer's interest by how long the customer gazes
on each item; we judge internet speed based on the time it takesto load a webpage; various
electric devices signal di�erent messages to us by the duration of a beep or �ash. However, the
mechanisms by which the brain estimates a duration is still unclear (For an non-exhaustive list
of recent reviews on duration perception, seeEagleman, 2008; Ivry and Schlerf, 2008; Grondin,
2010; Merchant et al., 2013). A traditional view of duration perception is that the brain possesses a
dedicated “internal clock” (Treisman, 1963; Gibbon, 1977). In this view, duration perception is less
dependent on low-level sensory processing. However, recent psychophysical studies have revealed
that perceived duration can, in fact, be in�uenced by variousproperties of a visual stimulus,
such as temporal frequency or speed of motion (Brown, 1995; Kanai et al., 2006; Kaneko and
Murakami, 2009; Tomassini et al., 2011; Kline and Reed, 2013), change of speed (Carrozzo and
Lacquaniti, 2012), numerosity (Long and Beaton, 1981; Xuan et al., 2007), contrast (Long and
Beaton, 1980; Xuan et al., 2007), spatial frequency (Aaen-Stockdale et al., 2011), and looming
(van Wassenhove et al., 2008). The fact that duration perception is in�uenced by so many low-
level sensory features suggests that the details of a sensory stimulus contribute to its perceived
duration. Perceived duration is not only in�uenced by the property of sensory stimuli, but also by
the history of stimuli: a repeated stimulus appears briefer than a novel stimulus (Tse et al., 2004;
Pariyadath and Eagleman, 2007; Schindel et al., 2011; Birngruber et al., 2014). This phenomenon
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has been suggested to re�ect a link between neural response
amplitude and perceived duration (Pariyadath and Eagleman,
2007; Eagleman and Pariyadath, 2009). In addition, it was
found that after adaptation to a fast drifting visual stimulus,
a slow drifting visual stimulus is perceived as being of shorter
duration when it appears at the adapted visual �eld, but not
at other locations (Johnston et al., 2006; Ayhan et al., 2009,
2011; Bruno et al., 2010). The latter example not only highlights
the involvement of low-level sensory processing in duration
perception, but also demonstrates that stimuli in di�erent parts
of the visual �eld can provide di�erent evidence of duration.

The �nding that perceived duration can be biased by the
sensory features of stimuli creates a puzzle. Even if visual objects
at di�erent locations last for the same physical duration, they
each can bias perceived duration in di�erent directions due to
their sensory features. How does the brain form a representation
of duration based on the duration estimates from di�erent visual
objects?

One possibility, as an extension of the hypothesis that
perceived duration is based on neural response amplitude
(Eagleman and Pariyadath, 2009), is that the perceived duration
may be based on the sum of the total neural response to all the
stimuli. An alternative hypothesis is that an estimate of duration
is formed based on each stimulus and the brain integrates these
estimates by a weighted average. A stronger statement of this
hypothesis is that the integration may be statistically optimal
(Ahrens and Sahani, 2011). A third hypothesis is that the brain
may form a duration representation based on only one of the
stimuli, with certain probability. A fourth hypothesis is that the
brain may only rely on the stimulus type that provides more
reliable (less variable) estimate of duration across trials. Lastly,
it is possible that the brain may generate a representation of
duration based on each stimulus and keep all the representations.
In this last framework, the brain may have �exibility to choose
which representation to use depending on the task.

Closely related to the question asked in this study,Ayhan
et al. (2012)investigated whether human observers can average
the durations of multiple objects. They �ashed multiple images
of di�erent durations with asynchronous onsets and asked
participants to make judgments with regards to the average
duration of those images. The precision of the duration judgment
was found to be worse when judging the average duration of
multiple images than when judging the duration of a single
image. The authors suggested that this re�ects an inabilityto
aggregate duration information from multiple items (Ayhan
et al., 2012). While this may be the case when the stimuli
have asynchronous onsets and o�sets, there has been no
study investigating whether and how human observers combine
duration information from multiple objects which appear and
disappear synchronously. To study the combination of duration
information without introducing asynchrony between stimuli,
we utilize the illusion that the temporal frequency of a visual
stimulus biases perceived duration to create con�icting estimates
of duration. In Experiment 1, we con�rm this illusion by a two-
alternative forced choice task. In Experiment 2, we qualitatively
test the predictions of each of the above hypotheses to focus
our attention on a few most plausible candidate models. In

Experiment 3, we quantitatively compare these candidate models
based on the trial-by-trial cross-validated log-likelihood of the
models.

Participants and Methods

The experiments were approved by the Institutional Review
Board of Baylor College of Medicine.

Participants
Except for the �rst author, participants were all naïve to the
purpose of the study. Participants provided informed consent
and received compensation. Nineteen participants (8 males, 11
females. Age 27� 7) took part in Experiment 1. Twenty-one
participants (13 males, 8 females. Age 29� 7) took part in
Experiment 2. Twenty participants (6 males, 14 females. Age 27�
6) took part in Experiment 3.

Apparatus
Experiment stimuli were displayed on a CRT monitor (Viewsonic
G225f) with a screen resolution of 1024� 768 pixels and a refresh
rate of 100 Hz, driven by a Dell Precision T3400 workstation
running Windows XP. There was no other light source other
than the monitor in the experimental room. Participants sat
at a distance of approximately 60 cm from the display. Each
participant wore a pair of earplugs with approximately 33 dB
noise reduction to prevent distraction.

Stimuli
Stimuli were presented using Psychtoolbox 3 (Brainard, 1997;
Pelli, 1997; Kleiner et al., 2007) for Matlab. Stimuli consisted
of one or two drifting Gabor patches with spatial frequency of
0.28 cycle/degree (estimated at 60 cm viewing distance). The
standard deviation of the 2-dimensional Gaussian envelop of
each Gabor patch was 0.90� . The starting phase of each Gabor
patch was independently sampled from a uniform distribution
over the range of 0–2p. The peak luminance of the Gabor patch
was 36.0 cd/m2. Stimuli were presented over gray background
of mid-luminance. Each Gabor patch was displayed at a distance
of 5.4� visual angle away from the �xation point. The �xation
point was at the center of the screen, indicated by a white cross
spanning a visual angle of 0.6� . Through the time course of
each stimulus, the sinusoidal component of each Gabor patch
drifted in a direction independently sampled from a uniform
distribution over the range of 0–360� . The speed of their drifting
was such that the luminance of any pixel of the Gabor patch
was modulated by a sinusoidal time signal of either 1 Hz (for the
low temporal frequency stimulus) or 6 Hz (for the high temporal
frequency stimulus). At the onset of each stimulus, the contrast
of the Gabor patch ramped up linearly from zero to maximum
in 40 ms. At the o�set, it ramped down in 40 ms. This ramping
of the contrast was to minimize potential arousal introducedby
abrupt onsets of stimuli.

Whenever two Gabor patches were displayed simultaneously,
the centers of the two Gabor patches were on opposite sides from
the �xation point, both on an invisible line that passed through
the �xation point. In any trial, the orientation of the invisible
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line passing through the �xation point and the Gabor patch(es)
in the �rst epoch was randomly sampled from a uniform
distribution over 0–2p. The invisible line passing through the
�xation point and the Gabor patch(es) in the second epoch was
always orthogonal to the invisible line in the �rst epoch. This
design was to minimize the e�ect of adaption due to presenting
consecutive stimuli at the same location (Johnston et al., 2006).

Experiment Procedures
On each trial, a participant watched two groups of drifting Gabor
patterns on the screen one after another and judged whether
the duration of the second group was longer or shorter than
that of the �rst group. Each group was composed of either a
single Gabor patch drifting at 1 Hz (we denote this by L), or a
single Gabor patch drifting at 6 Hz (we denote this by H), or a
pair of Gabor patches, one at 1 Hz and the other at 6 Hz (we
denote this by HL). In an HL stimulus, the two Gabor patches
had the same onset time and o�set time. The directions in which
they drifted were randomly chosen and independent from each
other. If a participant asked which one patch of the HL stimulus
they should judge, he/she was instructed that since the patches
appeared and disappeared synchronously, he/she should judge
the duration in which both of them stay on the screen.

The structure of each trial was as follows. A trial started by
a �xation cross appearing in the center of the screen. After a
duration sampled from a uniform distribution over the range
of 600–1000 ms, the �rst group of Gabor patch(es) appeared.
500–700 ms after the o�set of the �rst group of Gabor patch(es),
the second group appeared. 300–600 ms after the o�set of the
second group, the �xation cross disappeared and the participants
were allowed to make response. They indicated the duration of
the second group as lasting longer by pressing the right arrow
key, or indicated it as lasting shorter by pressing the left arrow
key. No feedback was provided. 1000–2000 ms after they made a
response, the next trial started.

On any trial of an experiment, one group of Gabor patches
lasted for 600 ms. We denote this stimulus of �xed duration by
reference stimulus. The other group lasted for duration of one
of 26 values between 100 and 1100 ms, equally spaced by steps of
40 ms. We denote this stimulus by comparison stimulus. For each
of these 26 values, the number of its incidence was approximately
proportional to the probability density of a Gaussian distribution
with a mean of 600 ms and a standard deviation of 300 ms at that
duration, rounded to the nearest integer. Thus, over the course
of an experiment, the distribution of the duration of comparison
stimuli approximates a truncated Gaussian distribution.

Experiment 1
There were two conditions in the experiment. In one condition,
the reference stimulus was H and the comparison stimulus was
L (denoted by LvsH). In the other condition, the reference was
L and the comparison was H (denoted by HvsL). On half of
the trials of each condition, the reference stimulus appeared
before the comparison stimulus. On the other half of the trials,
the comparison stimulus appeared before the reference stimulus.
Each condition had 180 trials, including both orders of display.
For each order of display in each condition, the comparison
stimuli of 100, 140, 180, . . . , and 1100 ms occurred for 1, 2, 2,2, 3,

3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, and 1 times.
These numbers of incidences were generated to approximate
a Gaussian distribution described above. Trials corresponding
to di�erent conditions, orders and comparison durations were
randomly interleaved in a session. There was no signal to indicate
to the participants which condition a trial belonged to.

Experiment 2
On all trials, the reference stimulus was an HL stimulus. The
comparison stimulus was an L, H, or HL stimulus. The reference
stimulus was always presented before the comparison stimulus.
Each condition had 148 trials. In each condition, the comparison
stimuli of 100, 140, 180, . . . , and 1100 ms occurred for 2, 2, 4,4, 4,
6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 6, 6, 6, 4, 4, 4, 2, and 2 times. The
trials of the three conditions were randomly interleaved.

Experiment 3
There were seven conditions in the experiment. In two
conditions, the reference stimulus was H; the comparison
stimulus was H or L, respectively. In two other conditions,
the reference stimulus was L; the comparison stimulus was H
or L, respectively. In the other three conditions, the reference
stimulus was HL; the comparison stimulus was H, L, or HL,
respectively. On half of the trials of each condition the reference
stimulus was presented before the comparison stimulus. On the
other half of the trials, the comparison stimulus was presented
before the reference stimulus. Each condition had 228 trials. Each
participant completed three sessions of experiment. For each
order of display in each condition, the comparison stimuli of 100,
140, 180, . . . , and 1100 ms occurred for 3, 3, 3, 3, 3, 3, 3, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, and 3 times in total over all
sessions. Trials corresponding to di�erent conditions, orders and
durations of comparison stimuli were randomly interleaved in a
session. The number of trials corresponding to each condition,
order and duration of comparison stimulus was equal across
sessions.

Results

Experiment 1
It has been found that visual stimuli of higher temporal frequency
or faster speed are perceived as lasting for longer than those
of lower temporal frequency or slower speed (Kanai et al.,
2006; Kaneko and Murakami, 2009). Our goal in Experiment
1 is to con�rm this �nding. In the previous literature, the
overestimation of duration was measured by a reproduction task:
after watching a stimulus, participants pressed a button for as
long as they believed the stimulus had lasted. The variance of
the reproduced duration in such a task is contributed to by
the variance of participants' perceived duration and the noise
in their motor timing. To avoid the latter, we used a two-
alternative forced choice task, in which participants watched two
consecutive stimuli and judged which lasted longer. This o�ers a
more accurate estimation of the di�erence in perceived durations
between stimuli of high and low temporal frequencies.

The stimuli of an example trial are shown inFigure 1A.
Each stimulus was a supra-threshold Gabor patch. Each pixel
of the Gabor patch was modulated by a sinusoidal time series
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of either 1 Hz (we denote this low frequency by L) or 6 Hz
(we denote this high frequency by H). Thus, the Gabor patch
appeared as a grating that drifted behind a static 2-dimensional
Gaussian aperture. The �rst Gabor patch appeared at a random
location with �xed distance from the center of the screen (�xation
point). The second Gabor patch appeared at the same distance
from �xation but either 90� clockwise or counterclockwise from
the �rst Gabor patch. On any trial, one of the stimuli lasted
for 600 ms (we denote this as reference stimulus), and the
other lasted for one of 26 durations equally spaced between
100 and 1100 ms (we denote this as comparison stimulus).
The distribution of the duration of the comparison stimulus
approximated a truncated Gaussian distribution with mean of
600 ms and standard deviation of 300 ms. On half of the trials,
the comparison stimulus was H and the reference stimulus
was L (HvsL condition). On the other half of the trials, the
comparison stimulus was L and the reference stimulus was
H (LvsH condition). On half the trials of each condition, the
reference stimulus appeared before the comparison stimulus. On
the other half, it appeared after. Participants reported whether the
second stimulus lasted longer or shorter than the �rst stimulus.

The participant-averaged psychometric curves are displayed
in Figure 1B. A leftward shift of a curve from centering at 600 ms
indicates that the duration of the comparison stimulus was
overestimated relative to the reference stimulus, and viceversa
for a rightward shift. There was a slight discrepancy between
the curves corresponding to di�erent orders of display, namely,
that curves deviated more from the reference duration and were
shallower when the comparison stimulus was presented �rst. This
type of discrepancy was also found in many other studies of
perceptual judgments (Nachmias, 2006; Lapid et al., 2008; Bruno
et al., 2010, 2012; Ahrens and Sahani, 2011). We will investigate
the source of such discrepancy in Experiment 3, together
with quantitatively comparing models of the representation of

duration for simultaneously presented H and L stimuli. For
simplicity, trials of di�erent orders of display but belonging
to the same condition were aggregated in the analysis. We
�tted each participant's responses in each condition by a curve
of Gaussian cumulative distribution on the logarithmic scale
of duration, with an additional term capturing lapse rate, the
chance that a participant had not paid attention to the stimuli
(Wichmann and Hill, 2001). The ratio of the perceived duration
of comparison stimuli to that of reference stimuli in each
condition was calculated based on the exponential of the shift
of the psychometric curve in the logarithmic scale. We denote
this ratio by the duration distortion ratio (DDR,Figure 1C). In
the LvsH condition, the duration of the L stimulus was judged
as 27.3� 3.0% (mean� s.e.m, the same through this paper
unless otherwise stated) shorter than the H stimulus; the DDR
was signi�cantly smaller than 1 [t(18) D � 9:10,p < 0:001]. In
the HvsL condition, the duration of the H stimulus was judgedas
52.1� 6.8% longer than the L stimulus; the DDR was signi�cantly
larger than 1 [t(18) D 7:67,p < 0:001]. The standard deviations
of the �tted Gaussian cumulative distribution functions represent
participants' sensitivity in discriminating duration in thetwo
conditions, termed as just noticeable di�erence (JND). The JND
was 0.27� 0.03 on the logarithmic scale of duration in the LvsH
condition, and 0.35� 0.03 in the HvsL condition. They were
signi�cantly di�erent [ t(18) D � 3:99,p < 0:001]. The JND in
logarithmic scale has similar meaning to Weber's ratio. When
psychometric curves were �tted without applying logarithmic
transformation of duration, the conclusions about DDR and
Weber's ratio stayed the same. The absolute value of the DDR
is very di�erent between LvsH and HvsL conditions. This may
indicate that the distortion in perceived duration caused bythe
temporal frequency is multiplicative instead of additive.

Experiment 1 con�rms the previous �nding that the perceived
duration of visual stimulus is biased by its temporal frequency

FIGURE 1 | Visual stimulus of higher temporal frequency is perce ived
as longer than that of lower temporal frequency. (A) Illustration of an
example trial. Two drifting Gabor patches with temporal frequencies of 1 Hz
(low frequency) and 6 Hz (high frequency), respectively, were displayed
consecutively with random order. One of them lasted for 600 ms (reference
stimulus), the other lasted for a duration between 100 and 1100 ms
(comparison stimulus). Participants judged which one stayed for a longer
duration by pressing one of two keys.(B) Average psychometric curves of

two conditions. Red color: the condition in which L was reference stimulus
and H was comparison stimulus. Blue color: the condition in which H was
reference stimulus and L was comparison stimulus. Solid lines: reference
was displayed before comparison stimulus. Dashed lines: comparison
stimulus was displayed before reference stimulus.(C) Duration distortion
ratio of the comparison stimulus relative to the reference stimulus in the two
conditions. High-temporal frequency stimuli were judged longer than
low-temporal frequency stimuli.
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or speed. This leads to our main question: how do we perceive
duration if two stimuli are presented simultaneously, one of
which moves faster and the other slower. In Experiment 2, we
test several hypotheses.

Experiment 2
This experiment examined the perceived duration of two stimuli
appearing simultaneously at di�erent locations, one of low
temporal frequency (L) and one of high temporal frequency (H).
We denote such stimuli by HL. The H and L elements of it appear
and disappear at the same time. This provides a clue that they
should correspond to the same period of duration. However,
following the observation in Experiment 1, the H and L elements
of HL each should cause con�icting biases on the respective
duration estimates, with H indicating a longer duration and
L indicating a shorter duration. How does the brain form a
representation of duration for the joint stimulus?
We consider �ve possibilities:

Global Summing Hypothesis
It is noticeable that neural response amplitude in visual cortex
also increases with temporal frequency in the range that was
tested in Kanai et al.'s experiments (Singh et al., 2000). The
bias in perceived duration caused by the temporal frequency
or speed of visual stimuli may be explained by assuming that
perceived duration is based on the neural response amplitude
to the stimulus (Eagleman and Pariyadath, 2009). It may also be
explained by assuming that duration perception is based on the
number of changes observed (Brown, 1995; Kanai et al., 2006). As
possible extensions of both of these hypotheses, we may assume
that the perceived duration of multiple elements is based on
either the total neural responses to all the stimulus elements or
the total number of changes in all stimulus elements. We denote
such hypotheses by “global summing.” Both of them predict that
HL should be perceived as lasting longer than both H and L.

Weighting Hypothesis
The perceived duration of HL may be formed by a weighted
average of each estimate of duration based on one of its elements.
We denote byxH the estimate of duration based on an H stimulus
lasting for a physical duration oft, and denote byxL the one based
on an L stimulus lasting the same duration.xH andxL both vary
across trials. We assume that their variations are independent and
both follow Gaussian distributions:

xH � N(t C bH ; � H) (1)

xL � N(t C bL; � L) (2)

bH and bL represent the bias of perceived duration introduced
by their temporal frequencies.� H and� L represent the standard
deviation of the distribution ofxH and xL. For simplicity, we
assume that a point estimation of the duration of stimulus HL
is formed by weightingxH andxL:

xHL D wHxH C (1 � wH)xL (3)

where the weightwH is a parameter of each participant, in the
range of [0, 1]. The distribution ofxHL would follow:

xHL � N(t C wHbH C (1 � wH)bL;
q

w2
H � 2

H C (1 � wH)2� 2
L )
(4)

For any weightwH , this predicts that on average HL is perceived
equal to or shorter than H, and equal to or longer than L. The
equality is only reached ifwH is 0 or 1, meaning one of the
elements is neglected. It also predicts that the standard deviation
of the perceived duration of HL is equal to or smaller than the
larger one of those of H and L (namely,� HL � max{� H , � L}).
The equality is only reached when the duration estimation isonly
based on the more variable estimation betweenxH and xL, i.e.,
whenwH D 1 and� H � � L, or whenwH D 0 and� H � � L.

The statistically optimal way to weight sensory evidence is
by setting the weight of each duration estimation inversely
proportional to the variance of that estimation (Jacobs, 1999;
Knill and Pouget, 2004). We denote the hypothesis that
the weighting follows this rule as the “optimal integration”
hypothesis, as a stronger version of the “weighting” hypothesis.
Based on this hypothesis, we expect the perceived duration of HL
to be less variable than that of each stimulus element H and L:

� HL D

s
� 2

H � 2
L

� 2
H C � 2

L
< minf� H ; � Lg (5)

Selection Hypothesis
Instead of weighting the estimates based on the two stimulus
elements, the brain may estimate the duration based on only one
of the two elements. On some trials the perceived duration may
be based on the H element and on other trials it is based on the L
element. The element selected to form duration representation
on a trial may be the one which more attention is paid to.
Assuming a participant has a probabilitycH to rely on the H
element to estimate duration, we have

xHL D
�

xH ; with probability cH
xL; with probability(1 � cH)

(6)

With the same notation as we used above, the mean ofxHL across
trials would be

t C cHbH C .1 � cH / bL (7)

and the standard deviation ofxHL across trials would be
q

cH � 2
H C (1 � cH) � 2

L C cH(1 � cH)(bH � bL)2 (8)

This predicts that the average of the perceived duration of HL
across trials is also equal to or shorter than that of H, and equal
to or longer than that of L. Equality is only reached ifcH is equal
to 0 or 1. As opposed to the “weighting” hypothesis, it predicts
that the standard deviation of the perceived duration of HL across
trials is equal or larger than the smaller one of those of H andL
(namely,� HL � min{� H , � L}). The equality is only reached when
the duration representation is always based on the stimulus type
which gives rise to a smaller variance of duration estimation, i.e.,
whencH D 1 and� H < � L, or whencH D 0 and� H > � L.
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Reliable Stimulus Hypothesis
The brain might only rely on one of the stimulus types across all
the trials, and the stimulus type it relies on may be the one that in
general gives rise to more reliable estimation of duration.Under
this hypothesis, if a participant estimates the duration of H with
less variability than estimating the duration of L, the participant
may always estimate the duration of HL based on the H element.
If the participant estimates the duration of L with less variability,
he/she may always rely on the L element to estimate the duration
of HL. This hypothesis also predicts that� HL � max{� H , � L}.
The average perceived duration of HL may be shorter than that
of H and longer than that of L across participants, if not all
participants estimate a same type of stimulus between H and L
more reliably than the other. However, for those who have more
reliable estimates of duration based on H, the perceived duration
of HL should be on average equal to that of H. And similarly for
those who have more reliable estimates of duration based on L.

Multiple Representations Hypothesis
Instead of forming a single representation of duration as
assumed by the above hypotheses, the brain might keep multiple
representations of duration, each based on one of the two
simultaneously presented stimuli. When asked to compare the
duration of HL with the duration of a single stimulus, the brain
might use one of the two representations formed during HL that
is based on the stimulus element that is most similar to the single
stimulus to be compared. For example, when viewing HL, the
brain might keep one duration representation based on H and
one based on L. When asked to compare the duration of HL with
the duration of H, the brain might compare the representation
based on the H element of HL with the duration representation
of the single H stimulus. In this case, H should be judged to beof
the same duration as HL on average. Similarly, L should also be
judged equally long as HL. In other words, under this hypothesis,
when the reference stimulus is HL and the comparison stimulus
is H or L, the DDRs of H and L relative to HL should be equal.

To test the above predictions, we asked participants to
compare the duration of H, L, or HL against the duration of
HL. Example trials are shown inFigure 2A. On each trial, the
reference stimulus was always presented before the comparison
stimulus. The reference stimuli were all of HL type. There
were three conditions distinguished by the types of comparison
stimuli. In 1/3 of the trials, the comparison stimuli were L
(LvsHL condition). In 1/3, the comparison stimuli were H
(HvsHL condition). In the other 1/3, the comparison stimuli
were HL (HLvsHL condition). Trials of the three conditions were
randomly interleaved. Participants judged whether the duration
of the second stimulus was longer or shorter than that of the �rst
on each trial.

We tested the predictions of each of the models by comparing
the DDRs between conditions. Each of the hypotheses generates
prediction about the relation between the average perceived
duration of HL and those of H and L.Figure 2B provides a
qualitative illustration of their di�erences. The “weighting” and
“selection” hypotheses generate the same qualitative prediction
about the average perceived duration of HL. The “reliable
stimulus” hypothesis may generate similar prediction as these

two as long as there is individual di�erence regarding which
of H and L is estimated with less variability. They are further
distinguished by their qualitative predictions of� HL, the standard
deviation of perceived duration of HL. Without losing generality,
by �xing the values of� H , � L and bH-bL, Figure 2C illustrates
how � HL varies as a function ofwH or cH , which are both
free parameters of each participant. The “weighting” hypothesis
predicts � HL � max{� H; � L} while the “selection” hypothesis
predicts � HL � min{� H; � L}. Under the “optimal integration”
hypothesis, a stronger version of the “weighting” hypothesis,
we have� HL � min{� H; � L}. The “reliable stimulus” hypothesis
predicts� HL � max{� H; � L}. The predictions about the average
perceived duration of HL are tested by comparing the DDRs
of each stimulus type relative to HL. Although the standard
deviations of perceived duration of each stimulus type cannotbe
directly measured, they have monotonic relation with the JNDs
in each condition. Therefore, the predictions about the standard
deviations of perceived duration are tested by comparing the
JNDs between conditions.

The participant-averaged psychometric curves are displayed
in Figure 2D. We �tted each participant's responses similarly as
in Experiment 1. The DDRs of the three conditions are displayed
in Figure 2E. In the LvsHL condition, the duration of the L
stimulus was judged as 11.0� 4.8% shorter than HL stimulus. In
the HvsHL condition, the duration of the H stimulus was judged
as 13.3� 2.5% longer than the HL stimulus. In the HLvsHL
condition, the duration of HL as comparison stimulus was judged
as 5.9� 2.7% longer than the HL as reference stimulus. A
repeated measures ANOVA revealed a signi�cant di�erence in
DDR between the three conditions [F(2; 40) D 11:81,p < 0:001].
Post-hocpaired t-tests between each two conditions revealed a
signi�cant di�erence between the LvsHL and HvsHL conditions
[t(20) D � 4:21, p < 0:001], a signi�cant di�erence between
the LvsHL and HLvsHL conditions [t(20) D � 2:66,p D 0:015]
and a signi�cant di�erence between the HvsHL and HLvsHL
conditions [t(20) D 3:33, p D 0:003], all of which passed the
Holm-Bonferroni multiple comparison criterion (Holm, 1979).
The DDR in HvsHL condition was signi�cantly larger than 1
(t-test, p < 0:001). The DDRs in the LvsHL was on average
smaller than 1, but the di�erence was not signi�cant after
correcting for multiple comparison (p D 0:03, Holm–Bonferroni
criterion). The DDR in the HLvsHL condition was also not
signi�cantly di�erent from 1 (p D 0:04, Holm–Bonferroni
criterion). The JNDs of the three conditions are shown in
Figure 2F. Because the psychometric functions were �tted after
logarithmic transformation of the duration, their units are also
in the logarithmic scale. A repeated measures ANOVA revealed
signi�cant di�erence in JNDs between the three conditions
[F(2; 40) D 7:48, p D 0:002]. Post-hocpaired t-test between
each pair of conditions revealed a signi�cant di�erence between
LvsHL and HvsHL conditions [t(20) D 2:81, p D 0:011], a
signi�cant di�erence between the LvsHL and HLvsHL conditions
[t(20) D 3:57, p D 0:002], but no signi�cant di�erence
between the HvsHL and HLvsHL conditions [t(20) D � 0:02,
p D 0:31]. The JND in the HLvsHL condition was signi�cantly
smaller than the maximum of those in the other two conditions
[t(20) D � 4:23, p < 0:001], (Figure 2G) but not signi�cantly
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FIGURE 2 | The representation of duration of simultaneously
presented high- and low-temporal frequency stimuli (HL) can be
described by a weighted average of the estimates of duration b ased
on the high-temporal frequency stimulus element (H) and
low-temporal frequency stimulus element (L). (A) Example of the stimuli
on a trial. Participants �rst viewed an HL stimulus lasting for 600 ms, then
viewed one of three types of stimuli, H, L, or HL, with variable duration
between 100 and 1100 ms. Participants judged which one lasted longer.
(B) The qualitative relation between the duration distortion ratios of the
comparison stimulus relative to the reference stimulus, predicted by four
hypotheses of how the representation of the duration of HL isformed. The
“reliable stimulus” hypothesis may generate the same prediction as

“weighting” and “selection” hypotheses if not all participants estimate the
same type of stimulus more reliably.(C) Illustration of the different predictions
of the standard deviation of perceived duration of HL in comparison to that of
H and L of the “weighting,” “optimal integration,” “selection,” and “reliable
stimulus” hypotheses. The �gure is generated by assuming� H D 0:2,
� L D 0:24, and bH – bL D 0:2. (D) Average psychometric curves of the three
conditions. (E) Average duration distortion ratio of the three conditions.
(F) Average just noticeable difference (JND) of the three conditions.
(G) Comparison between the JND in the HLvsHL condition and the larger
JND of the other two conditions. Each dot corresponds to one participant.
(H) Comparison between the JND in the HLvsHL condition and the smaller
JND of the other two conditions.

di�erent from the minimum of those in the other conditions
[t(20) D � 0:40,p D 0:69] (Figure 2H).

The �nding that HL was judged shorter than H argues
against the “global summing” hypothesis. The “multiple
representations” hypothesis is also ruled out because H and
L was judged di�erently relative to HL stimulus. The pattern
of DDRs among conditions of this experiment is consistent
with both the “weighting” and “selection” hypotheses. The key
di�erence of their predictions is with the standard deviation

of the duration estimation of HL compared to those of H and
L. JND indirectly re�ects the standard deviation. The �nding
that JND in HLvsHL condition was smaller than the maximum
of the JNDs in the other conditions supports the “weighting”
and “reliable stimulus” hypotheses. The �nding that it was not
signi�cantly di�erent from the minimum of the JNDs in the
other conditions does not provide support to the “selection”
hypothesis or the “optimal integration” hypothesis. If the
“reliable stimulus” hypothesis is true, then the participantswho
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estimate the duration of H with less variability than L should
have no di�erence in DDR between the HLvsHL and HvsHL
conditions; the participants who estimate the duration of L with
less variability should have no di�erence in DDR between the
HLvsHL and LvsHL condition. Because the JND is smaller in
HvsHL condition for majority of the participants (16 out of 21),
we test the former prediction in these participants. The DDR
was on average smaller in the HLvsHL condition (7.3� 3.2%)
than in the HvsHL condition (12.5� 2.6%). The di�erence was
marginally signi�cant withp D 0:054.

We also note that the DDR in the HLvsHL condition was
larger than 1, although the signi�cance level did not pass our
multiple comparison threshold. This may be due to participants'
response bias or their prior belief about the relation betweenthe
�rst and second stimuli. However, such factors should equally
impact all conditions. They do not in�uence our conclusions
because the conclusions are based on comparisons between
conditions. When psychometric curves were �tted without taking
a logarithmic transform of duration, all conclusions remained
the same except that the JNDs in LvsHL and HvsHL were not
signi�cantly di�erent (p D 0:14), which was not crucial for
testing the model predictions.

Therefore, the result of Experiment 2 provided qualitative
evidence that the perceived duration of two dynamic stimuli is
more likely formed by weighting the estimates of duration based
on each individual stimulus, although we cannot entirely rule out
the “reliable stimulus” hypothesis.

Experiment 3
Experiment 2 ruled out the “global summing” and “multiple
representations” hypotheses, provided qualitative support to
the “weighting” hypothesis, but could not rule out the “reliable
stimulus” hypothesis. The predictions of the “selection” and
“optimal integration” hypotheses were not supported by the data,
but they were also not entirely ruled out. In order to formally
compare the “weighting” hypothesis, the “optimal integration”
hypothesis, the “selection” hypothesis and the “reliable stimulus”
hypothesis, one needs to explicitly model the decision process
of each trial, predict the probability that a participant makes
each judgment, and calculate the likelihood of each model. The
probability that one stimulus is judged longer than another
depends on both the mean and standard deviation of the
perceived duration of the two stimuli over repetition of trials.
As shown in Equations (4), (6), and (7), under each hypothesis,
the mean and standard deviation of perceived duration of HL
depends on those of the perceived durations of both H and L.
Experiment 3 additionally included conditions in which the two
stimuli on a trial were H and H, L and L, and H and L. These
conditions constrained the �tting of parameters corresponding
to the means and standard deviations of perceived duration
of H and L, namelybH , bL, � H , and � L. In Experiment 1 we
noticed a discrepancy in psychometric curves corresponding to
di�erent orders in which reference and comparison stimuli were
displayed. To investigate the source of this discrepancy, trials
of both orders of display were included for each condition in
Experiment 3.

The timing structure of a trial in Experiment 3 was the same
as in Experiment 1. There were seven conditions, de�ned by
their reference and comparison stimuli. These conditions are
illustrated inFigure 3A. The participant-averaged psychometric
curves of each condition and each order of display are shown
in Figure 3E. Similarly to Experiment 1, a discrepancy existed
between the orders of displaying the reference and comparison
stimuli. In general, psychometric curves were steeper and closer
to the center of the range of duration when the reference stimulus
was displayed �rst.

In order to understand the process of forming the
representation of duration of HL and the discrepancy in
judgments due to the order of display, we constructed models
based on di�erent hypotheses concerning three factors (van
den Berg et al., 2014), and compared the log-likelihood of each
model by cross-validating it within data of each participant.The
details of the model comparison approach are described in Data
Analysis and Modeling. Here we brie�y list the major steps.

We consider the generative model of the sensory
measurements of duration by the brain as inFigure 3B. The two
durations to be compared on any trial were sampled from two
distributions, one corresponding to the reference stimulus, and
one corresponding to the comparison stimulus, as illustrated
in Figures 3B,C. The order in which they were displayed
was random from trial to trial. The true durations should be
unknown to the brain. The brain only has sensory measurements
of duration based on each of H or L stimulus, or each element
of HL stimulus, which are noisy and biased by the temporal
frequencies. We assume that the brain infers the relation
between the two durations given its sensory measurements
of duration from each stimulus or stimulus element. We
further assume that the biases in sensory measurements are not
accessible to the brain at the inference stage. It is very unlikely
that the brain learns the true distributions from which the
durations are sampled because of the noise in their sensory
measurements and the biases introduced by di�erent types of
stimuli. For simplicity, we model the belief of the distributions
by convolution of the true distributions of the durations (of
reference and comparison stimuli) with a Gaussian kernel, as
demonstrated inFigure 3C. The asymmetric shapes of these
distributions result from the logarithmic transformationof
duration.

We constructed models by all combinations of assumptions
concerning each of three factors: how to form a representation
of duration for HL, whether the memory of the sensory
measurement of a stimulus' duration decays over time, and
how the brain incorporates prior belief of the distributions of
duration in their decision. After constructing these models,we
performed a thorough factorial model comparison to examine
the performance of each hypothesis in each of the three factors
(van den Berg et al., 2014).

For the �rst factor, we considered the “weighting” hypothesis,
“optimal integration” hypothesis, “selection” hypothesis, and
“reliable stimulus” hypothesis. They di�er in how the brain
calculates the likelihood of any duration being the true duration,
given the sensory measurements of duration based on each
elements of HL.
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FIGURE 3 | Model comparison provides quantitative evidence fo r the
“weighting” hypothesis and identi�ed the source of the disc repancy in
psychometric curves corresponding to different order of disp laying
reference and comparison stimuli. (A) All the conditions tested in
Experiment 3. Each condition corresponds to one solid line in the middle,
connecting reference, and comparison stimuli. The order inwhich reference
and comparison stimuli were displayed was random.(B) The generative model
of an example trial for inferring the relation between two durations, if a
participant considers the full structure of the task.O, order of display; c-r,
comparison stimulus was displayed before reference stimulus; r-c, reference
stimulus was displayed before comparison stimulus;t1, t2, durations of the
�rst and second stimuli; x1, x2, sensory measurement of the �rst and second
duration based on the stimuli;x2;H, x2;L, sensory measurements of the
second duration, based on its H and L element, when the stimulus type is HL;
D, decision variable indicating the relation betweent1 and t2. (C) Illustration of
how O decides the wayt1 and t2 are sampled from two different distributions
corresponding to the reference and comparison stimuli. Thecolors of the
arrows correspond to the respective orders of displayO. (D) The work�ow of
model comparison. Each model is �tted to part of a participant's trials (training
data) to �nd the combination of parameters that maximized theprobability of
those trials. The �tted parameters are used to predict the behavior in the rest of
the participant's trials (testing data). The probability of the testing data
assuming the parameters �tted to the training data are logarithmically

transformed to calculate the cross-validated log-likelihood. This procedure is
repeated by rotating the selection of testing data over eachof the 1/12 portion
of the data. Models are compared based on the sum of cross-validated
log-likelihood over all the data.(E)Average psychometric curves. Figures in
the same column correspond to conditions of the same type of reference
stimuli. Figures in the same row correspond to the same orderof display. Color
codes for the type of comparison stimuli. Shaded areas represent the �tted
choice probabilities in each condition (mean� s.e.m) by the best model in(F).
(F)The difference of cross-validated log-likelihood of each model compared to
the best model. “weight,” weighting hypothesis; “select,”selection hypothesis;
“opt_int,” optimal integration hypothesis; “reliable_stim,” reliable stimulus
hypothesis; “�at,” �at prior hypothesis; “single,” single prior hypothesis;
“double,” double priors hypothesis.(G)With individual variability, “weighting”
model outperforms each of other models in most participants. The bars
represent the differences of the cross-validated log-likelihood of the best
models assuming each hypothesis regarding the mechanism offorming the
representation of duration for HL stimulus, compared to that of the best model
assuming “weighting” hypothesis. A negative bar indicatesthe model is inferior
to the “weighting” model. Each group of bars corresponds to one participant.
(H) Participants tended to overweight the duration estimate based on H
stimulus. The coordinates of each dot correspond to the weight of H estimated
in the “weighting” model and the weight of H predicted by the “optimal
integration” model for each participant.

For the second factor, we considered two hypotheses. Note
that when participants made their judgments on any trial,
more time had elapsed since the �rst stimulus than since the

second stimulus. The �rst hypothesis, “decay” hypothesis, states
that because of the elapse of time, the memory of the �rst
duration decays more than the second, becoming noisier and
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more uncertain. To re�ect this hypothesis, we assumed that
the standard deviation of the sensory measurement of the �rst
duration is scaled up by a constant factor relative to that of
the second duration. The second, “no decay” hypothesis, states
that the standard deviation is the same regardless of whethera
stimulus is presented �rst or second.

For the third factor, we considered three hypotheses. The
�rst one, the “�at prior” hypothesis, states that the brain does
not take into account any prior distribution of duration, thus
its judgments are purely based on sensory measurements of
duration. The second one, the “single prior” hypothesis, states
that the brain learns the mixture of the durations of reference and
comparison stimuli as a global distribution and assumes thatboth
durations on any trial are sampled from this distribution. The
third one, the “double priors” hypothesis, states that the brain
learns the full structure of the generative model inFigure 3Cthat
the two durations on any trial are sampled from two di�erent
distributions and displayed in random order. Consequently,it
incorporates the two learnt distributions and considers both the
possible orders of display in the decision process.

The work�ow of the model comparison is illustrated in
Figure 3D. For each model, we derived the decision rules of
judging the relation between two durations given any possible
sensory measurements on a trial. By integrating the hypothesized
distributions of sensory measurements over the range whereone
of the two judgments should be made according to the decision
rule, we obtained the probability that a participant should have
made that judgment on any trial (we denote this by choice
probability). The choice probability depends on the parameters
in each model. Each model thus can be �tted to a subset of
data (denoted by training data) of a participant by �nding the
parameters that maximizes the product of the choice probabilities
of all trials in the training data. Each model can be evaluated by
predicting the probabilities of the judgments that the participant
had made in the rest of the trials (denoted by testing data) based
on the parameters �tted to the training data. We conducted 12-
fold cross-validation of each model on each participant's data.
The logarithm of the product of predicted probabilities over
all testing data in the 12-fold cross-validation was compared
between models. We denote this measure by cross-validated log-
likelihood. This measure is not sensitive to the complexity of
the models. A model that is unnecessarily complex would be
over�tted to the training data, resulting in low cross-validated
log-likelihood.

Figure 3F shows the di�erence of cross-validated log-
likelihood of each model from the model that is on average the
best across all participants. The more negative the di�erence is,
the worse a model performs. There are several observations from
this �gure. (1) The largest distinction of model performancewas
introduced by the assumptions about memory decay and prior
belief of duration distribution. Models that assume the existence
of memory decay and assume the brain incorporates prior belief
of the duration distribution in either form of “single prior”
and “double priors” largely outperformed models that do not
make these assumptions. By investigating the choice probability
predicted by each model, we found that only the combination
of the assumptions of memory decay and incorporation of

prior(s) of non-�at form can introduce a di�erence in choice
probability between di�erent orders of displaying reference and
comparison stimuli. (2) On average across participants, the
“weighting” hypothesis was the best model to describe the
representation of duration of the HL stimulus. Among models
that can explain the e�ect of displaying order, the best model was
the one assuming a combination of the “weighting” hypothesis,
the “decay” hypothesis and the “double priors” hypothesis in
the three factors, respectively. Pairedt-tests between the cross-
validated log-likelihood of all other models and that of the best
model revealed that the best model outperformed every of other
models signi�cantly (Thep-values passed Holm–Bonferroni
multiple comparison thresholds witha D 0:05. The largestp-
value was 0.016 when comparing the best model against the
model assuming a combination of “optimal integration,” “decay,”
and “double priors”). The average di�erence across participants
between the best model and the models with other hypotheses
regarding the representation of the duration of HL was at least
3.2 (the best among those models with other hypotheses was the
one assuming “selection,” “decay,” and “double priors”). Notice
that this di�erence is in the logarithmic scale. It means thatthe
best model with the “weighting” hypothesis performs at least 25
times as well as models assuming other hypotheses regarding
the perceived duration of HL. Since the cross-validated log-
likelihood is on the same scale as Bayes factor, the guidance
of drawing conclusion on model performance based on Bayes
factor (Kass and Raftery, 1995) can help judge the strength of
evidence for the best model. According to Kass and Raftery, such
di�erence as observed in the result of Experiment 3 is considered
as “strong” evidence for the best model.Figure 3Eoverlays the
average psychometric curves over the choice probability �tted by
the best model.

Figure 3Gdisplays the model performance for each individual
participant, focusing on the mechanism of estimating duration of
HL. For each participant and for each hypothesis regarding the
perceived duration of HL, we identi�ed the best model among
the ones with that hypothesis. The di�erence in cross-validated
log-likelihood between each of these best models and the best
model with the “weighting” hypothesis is plotted inFigure 3G
for each participant. Although there is individual di�erence with
respect to the best model for each participant, the “weighting”
hypothesis outperforms each of other hypotheses in most
participants.

We further compared the estimated weight of H element in
the best model with the weight predicted by “optimal integration”
based on the standard deviation of the duration estimates ofthe
H and L (Figure 3H). The participants' weights of H element
(0.70� 0.05) were signi�cantly larger than those predicted by
“optimal integration” [0.50� 0.03, pairedt-test, t(19) D 3:53,
p D 0:002]. There was no signi�cant correlation between
weights estimated in the best model and the weights predicted
by “optimal integration” (p D 0:86).

The discrepancy in psychometric curves found in Experiment
1 can also be accounted for by the same mechanism found
in Experiment 3. A model constructed with “decay” and
“double-priors” hypotheses �tted well to the psychometric curves
(Figure 4). Models constructed with “no-decay” or “�at-prior”
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hypotheses cannot predict such discrepancy corresponding to
di�erent orders of display (�gures not shown).

The result of Experiment 3 con�rmed that the representation
of duration of HL is best described by weighting the duration
estimates based on each stimulus element. The brain appears
to weight H more than predicted by “optimal integration.” In
addition, it shed light on the source of discrepancy in participants'
judgments between di�erent orders of displaying reference and
comparison stimuli. Degradation of memory with elapsing time
and incorporation of prior distributions of duration jointly
account for this discrepancy.

Discussion

In this study, we �rst used a two-alternative forced choice task
to con�rm previous �nding that perceived duration is biased
by the temporal frequency or speed of a visual stimulus. We
further asked how the brain forms a representation of duration
when two visual stimuli are displayed simultaneously, one of
lower temporal frequency and one of higher temporal frequency.
By both qualitatively testing predictions of di�erent models and
quantitatively comparing models based on cross-validated log-
likelihood, we concluded that the model that best explains the
data assumes the duration representation of such joint stimuli
is formed by weighting the estimates of duration based on
each stimulus element. However, participants' behavior could
not be explained well by the framework of statistically optimal
integration. Instead, they tended to overweight the evidence
of duration from the stimulus element of higher temporal
frequency. In addition, we found that the joint e�ect of memory
decay and incorporation of prior belief of the distributions of
duration can account for a discrepancy between psychometric

FIGURE 4 | A model constructed with “decay” and “double-prior s”
hypotheses captures the discrepancy in psychometric curves
observed in Experiment 1. Shaded areas represent the predicted choice
probabilities.

curves of trials belonging to the same condition but with di�erent
orders of displaying reference and comparison stimuli.

Previously, the perceived duration of a sequentially
concatenated stimulus that is composed of intermittent periods
of static and drifting stimuli was found to be perceived shorter
than a constantly drifting stimulus of the same duration, but not
di�erent from a static stimulus (Bruno et al., 2012). This appears
in contrast to our �nding that participants overweight the
estimate based on the H element when estimating the duration
of HL. We should note that in their experiment, the static and
drifting intervals of a stimuli were concatenated, rather than
presented simultaneously. Therefore, estimating durationof the
concatenated stimulus may be viewed as summing the durations
of each short interval during which the stimulus was constantly
drifting or static instead of averaging the durations of those short
intervals. In contrast, the H and L elements in our HL stimulus
were displayed simultaneously. Given the large di�erence in the
temporal structures of the stimuli between the two studies, the
results of the two studies may not be directly comparable.

In all of our analyses, the curve �tting and modeling were
performed after taking logarithmic transformation of duration.
This was done because the Weber's law in duration perception
(Gibbon, 1977; Buhusi and Meck, 2005) can be easily captured
by assuming a constant level of noise on a logarithmic scale
of duration. Fitting a Gaussian cumulative function to the data
in Experiment 1 and 2 without logarithmic transformation
generated qualitative identical results in all the comparisons
critical to our conclusions. We did not attempt to model the
data of Experiment 3 on a linear scale of duration because
the assumption that sensory measurements follow a Gaussian
distribution on a linear scale would result in negative duration
estimates, which is meaningless. Additional complexity exists if
one chooses to model in linear scale and to assume that the
standard deviation of the sensory measurement scales with the
duration, because the likelihood function cannot be analytically
described by Gaussian function anymore in such a case (Girshick
et al., 2011).

In our experiments, we utilized the illusory phenomenon that
perceived duration is biased by the temporal frequency or speed
of a visual stimulus (Kanai et al., 2006; Kaneko and Murakami,
2009) to manipulate the length of perceived duration without
changing the physical duration of a stimulus. There still exists a
debate on whether the bias is induced by temporal frequency or
speed (Kaneko and Murakami, 2009; Linares and Gorea, 2015).
Our result is independent from the answer to this debate, because
the spatial frequency was constant in all stimuli and temporal
frequency was proportional to speed in our experiments. One
may worry that observers could have just used the onsets and
o�sets to judge duration in our task. This possibility is not
compatible to our result because purely judging duration based
on the onsets and o�sets would not give rise to the di�erence
in perceived duration between H and L, or between HL and the
other two types of stimuli.

Several hypotheses have been proposed to account for the
in�uence of temporal frequency or speed on perceived duration.
Our results may provide constraints to these hypotheses. First,
one hypothesis was that perceived duration may be based
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on the amount of change in the environment (Fraisse, 1963;
Gibson, 1975; Poynter, 1989; Brown, 1995; Kanai et al., 2006). A
quantitative formalization of this idea in the Bayesian observer
framework was recently introduced (Ahrens and Sahani, 2011).
A second hypothesis was based on the observation that stimuli
of longer perceived duration, including those of higher temporal
frequencies, typically also elicit larger neural responses.This
hypothesis proposed that perceived duration may re�ect the
neural energy expended to encode sensory stimuli (Pariyadath
and Eagleman, 2007; Eagleman and Pariyadath, 2009). Lastly,
within the traditional “internal clock” framework of time
perception, another hypothesis proposed that �uctuation of
neural activity in visual cortex modulated by sensory stimuli
may play a role in the tick rate of the clock (Kanai et al., 2006;
Kaneko and Murakami, 2009). For the hypothesis based on
amount of changes, our results suggest that perceived duration
is not based on the total number of changes in all stimuli.
Similarly, for the hypothesis based on neural energy, our results
suggest that the perceived duration is not formed by summing
the neural response to all stimuli, at least for dynamic stimuli.
Both of these hypotheses can still be valid if we assume that
duration estimates are based on local stimuli and these estimates
are further weighted to form a global representation. For the
hypothesis within an “internal clock” framework, our results
suggest that the clock signals may come from distributed sources
in sensory cortex and the tick counts from each source may be
fused by weighted average. In contrast, if one assumed thereis
only one centralized clock, it would be di�cult to explain the
di�erence in JNDs when participants compare di�erent types of
stimuli. Although our “weighting” hypothesis resembles thespirit
of cue integration in the Bayesian observer model, the “optimal
integration” hypothesis did not provide the best account for our
data.

Note that our implementation of the “optimal integration”
hypothesis in Experiment 3 made some simplifying assumptions
compared to the modeling framework ofAhrens and Sahani
(2011). First, in their paper, the likelihood of duration was
calculated as the probability of observing the changes between
several samples in a dynamic luminance signal by assuming
the signal follows the temporal statistics in natural scenes. By
simulating this calculation one can obtain the biases of perceived
duration due to di�erent temporal frequencies. We did not use
this approach to predict the biases because we found that the
bias depends on free parameters such as the number of samples,
sampling rates, and the contrast of stimuli compared to that of
luminance signals in natural scene. Instead, we simply assumed
the biases and standard deviations of the sensory measurements
of duration are free parameters for each participant. This
simpli�cation should not in�uence our conclusion as long as the
distribution of sensory measurements predicted by simulating
their model approximates a Gaussian distribution. Second, inthe
model of Ahrens and Sahani's, there was an additional source
of duration estimation purely based on internal neural activity,
independent from the sensory inputs. We did not include this
internal estimation in our models because it was shown that
this internal estimation was not crucial to the predictions of
their model (Ahrens and Sahani, 2011). However, even if we had

included such an internal estimation, optimal integration should
still predict � HL � min{� H , � L} in Experiment 2, which was not
re�ected in the comparison of JNDs.

In Experiment 3, we found that memory decay and
incorporation of the prior distributions of duration together
account for the discrepancy in the threshold and slope of
psychometric curves corresponding to di�erent orders of
display. The discrepancy in threshold resembles a phenomenon
sometimes called the “time-order error” (Hellstrom, 1985). A
similar discrepancy in the slope of psychometric curves was also
found in many other studies of perceptual judgments (Nachmias,
2006; Lapid et al., 2008; Bruno et al., 2010, 2012; Ahrens and
Sahani, 2011). It was proposed that an implicit standard was used
in such comparison (Nachmias, 2006; Lapid et al., 2008). In our
minds, this so-called “implicit standard” or “internal standard”
plays a similar role as the prior distribution in our “single prior”
model. In the model byLapid et al. (2008), participants only
weight the “internal standard” with the sensory evidence of the
�rst stimulus but not with that of the second stimulus. In our
models assuming “single prior” and “memory decay,” the decay
of memory causes the likelihood function of the �rst duration
to be wider than that of the second. This in turn makes the
in�uence of the prior distribution to the posterior distribution for
the �rst duration stronger than for the second. This is similar to
giving more weight to the “internal standard” when calculating
a weighted average of the “internal standard” and the sensory
estimate of duration. Our modeling result (Figure 3F) suggests
that such discrepancy due to the order of display may re�ect an
optimal strategy to integrate sensory evidence with prior belief of
the structure of the task. A similar model was recently proposed
to account for an order e�ect in a task of discriminating lengths of
bars (Ashourian and Loewenstein, 2011). The fact that a common
mechanism can account for related phenomena in both spatial
and timing tasks indicates that similar inference strategies may
be used in various domains of perceptual tasks. Here we give an
intuitive explanation of why the prior distributions and memory
decay jointly causes the e�ect of the displaying order, taking the
“double priors” hypothesis as an example. Under this hypothesis,
the brain separately calculates the posterior probabilities ofthe
�rst duration being longer/shorter than the second based oneach
hypothetic order of display, and averages these probabilities to
make the �nal judgment. To calculate the posterior probabilities
of the relation between the durations, the brain needs to calculate
the posterior probabilities of the duration of each stimulus.The
prior distribution learnt from the comparison durations is much
�atter than that learnt from the standard duration, and is thus
less informative. Because it is less informative, it has smaller
contribution to the posterior distribution no matter if it is used
to infer the duration of a standard stimulus or of a comparison
stimulus. On the contrary, the prior distribution corresponding
to the standard duration is more concentrated and thus more
informative. But it is only bene�cial to the accuracy of judgment
when it is used to calculate the posterior distribution of the
duration for a stimulus that is actually the standard stimulus. If
it is used to calculate the posterior distribution of a comparison
stimulus, it “drags” the mass of the posterior distribution toward
the standard duration, which makes the judgment more di�cult.
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On the other hand, the relative contribution of the prior
distribution to the posterior distribution also depends on the
shape of the likelihood function of duration. The prior has
relatively stronger impact on the posterior if the likelihoodis
�atter (less informative). This is the case for a stimulus that
appears �rst in a trial, due to the decay of memory. Therefore,
in the trials of which the �rst stimulus is the standard stimulus,
the prior distribution corresponding to the standard duration
provides larger bene�t for estimating the posterior distribution
of the standard duration but generates less “dragging” e�ecton
the posterior distribution of the comparison stimulus. In the
trials of which the �rst stimulus is the comparison stimulus,the
“dragging” e�ect is stronger for the comparison stimulus but the
bene�t is weaker for the standard stimulus. This explains why
the psychometric curve is steeper when the standard stimulus
appears �rst.

One may worry that the order e�ect may be caused by lower
uncertainty of the location of the second stimulus than thatof the
�rst. Because the e�ect of the order of display is observed in many
other studies which do not manipulate the location of stimulias
we do, we think the di�erence in uncertainty of the position of
the stimuli is unlikely the major cause of the order e�ect.

Observers' behavior in cross-modality cue combination tasks
of many spatial features can often be well described by statistically
optimal integration or appear close to optimality (Jacobs, 1999;
Ernst and Banks, 2002; Battaglia et al., 2003). However, it is
puzzling that behavior in cue combination tasks of duration or
other temporal features often deviates from optimality in one
way or another (Burr et al., 2009; Shi et al., 2010; Hartcher-
O'Brien and Alais, 2011; Tomassini et al., 2011). Are brains
simply suboptimal when it comes to time? It is di�cult to give
a comprehensive explanation of the sub-optimality; we can only
provide some speculations. The �rst possibility is the role of
causal inference (Knill, 2003, 2007; Körding et al., 2007; Shams
and Beierholm, 2010): the brain not only needs to integrate
di�erent cues to form a more reliable estimation, but also needs
to infer which of the cues may be generated by a di�erent
cause and should not be integrated. When two cues con�ict
too much or their relation violates some constraints, the brain
should not integrate them but should instead treat them as
from di�erent sources. In spatial cue integration tasks, the
temporal contingency between cues provides a strong clue that
the cues may be generated from the same source. Unfortunately,
in order to study duration cue combination, researchers often
have to make the physical durations of the stimuli di�erent
(Hartcher-O'Brien and Alais, 2011; Ayhan et al., 2012). This
creates asynchrony in onset and o�set time between stimuli,
which provides a strong clue that they should not be integrated.
In fact, Ayhan et al. (2012)found a poorer performance when
judging the average duration of multiple asynchronous stimuli
than when judging the duration of a single item. They also found
no signi�cant di�erence between judging two items and judging
eight items. It is possible that when stimuli are asynchronous, the
brain does not perform weighted average but randomly selects
one stimulus to estimate duration. Our use of temporal frequency
to bias perceived duration avoided this asynchrony. However, it
is still possible that the di�erence between the duration estimates

of the H and L elements may be too large for participants to
integrate them on some trials. Future studies that systematically
manipulate the temporal frequencies of the two stimuli may
help answer whether causal inference is the major cause of
the apparent sub-optimality in combining duration estimates.A
second possibility is that the stimuli used are not common in
the natural environment and the brain may have a wrong belief
about the precision of duration estimation based on each type of
stimulus. Third, the H element may draw more attention than
the L element, and the reliability of duration estimation may be
changed due to di�erent levels of attention. Lastly, it is possible
that participants may have insu�cient knowledge of some task-
relevant information. For example, they may have learnt a
wrong prior distribution, which may translate to apparent sub-
optimality. These possibilities all call for future investigation. We
believe that our approach of manipulating perceived duration can
be further extended in studying many questions related to the
integration of duration estimation.

In our experiments, we only manipulated the bias of
perceived duration by temporal frequency, but did not attempt
to manipulate the precision of the perceived duration. The
di�erence in the precision of duration estimates of H and L were
inherent to each participant. This re�ects another limitation in
studying cue combination in time perception: to our knowledge,
there are few, if any, manipulations of visual stimuli that
can independently in�uence the magnitude and precision of
perceived duration (although seeHartcher-O'Brien et al., 2014,
where the precision of perceived duration of auditory stimuliwas
manipulated by the signal to noise ratio of a tone). It is still largely
unknown what determines the precision of duration estimation
of di�erent types of stimuli, such as the H and L stimuli in our
experiments. Understanding how and why variability of duration
perception changes with di�erent stimulus features may provide
insights into the mechanism by which duration is estimated
based on sensory signals. Quantifying the statistics of natural
scenes and deriving the optimal encoding and decoding strategy
has been a fruitful approach in generating models for how the
brain might solve spatial perception tasks. The performances of
such models often highly resemble the performance of human
observers (Geisler et al., 2009; D'Antona et al., 2013; Burge and
Geisler, 2014). Only a few studies in time perception have taken
this perspective (Ahrens and Sahani, 2011). We speculate that
further analysis of the statistical structure of temporal signals
in natural environments may identify the optimal strategy to
estimate time based on natural signals and provide ways to
understand the variability in duration judgments.

Data Analysis and Modeling

Experiment 1
We �tted each participant' responses by psychometric functions
with shapes following Gaussian cumulative distribution. Trials
of both orders of display belonging to the same condition were
treated equally when �tting a psychometric function to them.

For trials in the LvsH condition, we denote byti;L the
logarithmic transformation of the physical duration of the
comparison stimulus on theith trial. Similarly, for trials in the
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HvsL condition, we denote byti;H the logarithmic transformation
of the physical duration of the comparison stimulus on theith
trial. We assume that the probability of a participant's response
ri;L for the ith trial of the LvsH condition is

p
�
ri;L D "longer"

�
� ti;L; bLvsH; � LvsH; �

�

D .1� � / 8
�
ti;L C bLvsHI tref; � LvsH

�
C

1
2

� (9)

p
�
ri;L D " shorter"

�
� ti;L; bLvsH; � LvsH; �

�

D 1 � p
�
ri;L D " longer"

�
� ti;L; bLvsH; � LvsH; �

�
(10)

Similarly, we assume the probability of responseri;H for the ith
trial of HvsL condition is

p
�
ri;H D " longer"

�
� ti;H ; bHvsL; � HvsL; �

�

D .1� � / 8
�
ti;H C bHvsLI tref; � HvsL

�
C

1
2

� (11)

p
�
ri;HD "shorter"

�
� ti;H ; bLvsH; � HvsL; �

�

D 1 � p
�
ri;HD "longer"

�
� ti;H ; bHvsL; � HvsL; �

�
(12)

where � is the probability that the participant would make
random guess (lapse rate, common for both conditions);bLvsH
is the bias of perceived duration of stimulus L relative to H in
the LvsH condition (in the log scale of duration);bHvsL is the
bias of perceived duration of stimulus H relative to L in the
HvsL condition;� LvsH and� HvsL re�ect the sensitivity to duration
di�erence in the two conditions (JND on the logarithmic scale of
duration).8 (�) is Gaussian cumulative distribution function.

We assumed the responses are independent between trials.
The likelihood of the parameters L

�
bLvsH;

� LvsH; bHvsL; � HvsL; �
�

D p(data jbLvsH; � LvsH; bHvsL; � HvsL; � )
could then be calculated by the product of the probability of
response for each trial:

L
�
bLvsH; � LvsH; bHvsL; � HvsL; �

�

D p
�
data

�
� bLvsH; � LvsH; bHvsL; � HvsL; �

�

D
NY

i D 1

P
�
ri;L

�
� ti;L; bLvsH; � LvsH; �

�
�

NY

i D 1

P
�
ri;H

�
� ti;H ; bHvsL; � HvsL; �

�
(13)

where N is the number of trials in each condition. For
each participant, we �tted all the parametersbLvsH,
bHvsL, � LvsH, � HvsL, and � simultaneously to maximize
L

�
bLvsH; � LvsH; bHvsL; � HvsL; �

�
, using the “fmincon” function in

Matlab. Since the curve �tting was performed after logarithmic
transformation of duration, the bias termsbLvsH and bHvsL
represent duration distortion in the logarithmic scale. We then
calculatedebLvsH and ebHvsL as the duration distortion ratio
plotted inFigure 1C.

Experiment 2
The procedure of �tting parameters of psychometric functions
was similar to that in Experiment 1. The bias termsbLvsH and
bHvsL were replaced bybL, bH , andbHL, corresponding to the bias
of the perceived duration of each type of comparison stimulus
relative to that of the reference stimulus (in the log scale of
duration). The JND terms� LvsH and � HvsL were replaced by� L,
� H , and� HL for each condition.

Experiment 3
Generative Model
Participants' judgments were considered as an inference process.
In Figure 3B, we illustrate an example of the generative models
which we assume this inference process may be based on if the
brain considers the full structure of the task. On each trial, a
binary variableO determines the order in which the stimuli
of di�erent durations are displayed to the participant. With
probability of 0.5, the reference stimulus is displayed before
the comparison stimulus (we denote this byO D “r-c”). With
probability of 0.5, the comparison stimulus is displayed before
the reference stimulus (we denote this byO D “c-r”). t1, the
true duration of the �rst stimulus, andt2, the true duration
of the second stimulus, are sampled from the corresponding
distributions of reference stimulus and comparison stimulus.
Figure 3C illustrates this sampling process. The brain does not
have access to the orderOor the true durationst1 andt2. Instead,
it has noisy neural measurements of durations that can vary from
trial to trial. We denote these measurements byx1 andx2. Here,
t andx are both in logarithmic scale of duration.

In the cases that the stimulus type in durationti(i D 1, 2) is
H or L, we assumed that the distribution ofxi follows a Gaussian
distribution on the logarithmic scale of duration. The meanof the
distribution is biased by the corresponding stimulus type H orL,
as described in Equations (1) and (2).

In the case that the stimulus type in durationti (i D 1, 2) is
HL, one noisy measurement is generated based on each element
of HL. Figure 3Billustrates an example of such a case when the
stimulus of durationt2 is HL. We denote the measurements based
on the two elements of HL byx2 = {x2;H , x2;L}. We assumed
that the distribution of duration measurement based on each
element is the same as when only that element is displayed, and
independent from each other:

xi;H � N(t C bH ; � 2
H) (i D 1; 2) (14)

xi;L � N(t C bL; � 2
L ) (i D 1; 2) (15)

Inference Process
The brain only has access tox1 andx2. What participants report is
their belief of the relation betweent1 andt2, denoted by decision
variableD (D D 0 meanst1 > t2 and D D 1 meanst1 < t2).
The process of generating a response aboutD based on noisy
observationsx1 andx2 is the inference process that we modeled.

We assumed that the brain estimates the posterior
distributions of stimulus durationst1 and t2 based onx1
andx2:

p(ti jxi) D
p(xi jti) � p(ti)

p(xi)
; (i D 1; 2) (16)
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The posterior distribution is proportional to two factors:p(ti),
the prior distribution of ti , andp(xi |ti), the likelihood ofti . The
former is a participant's belief of the general distribution of the
duration in the experiment without any sensory evidence. The
latter is the probability that any particularti can generate the
sensory measurementxi , regardless of the prior belief.

Based onp(ti |xi), the brain further calculates the posterior
probability of the decision variableD:

p.D D 0 j x1; x2/ D p.t1> t2 j x1; x2/

D
Z C1

�1
dt1

Z t1

�1
dt2 p.t1 j x1/ p. t2 j x2/ (17)

p.D D 1 j x1; x2/ D p.t1< t2 j x1; x2/

D
Z C1

�1
dt2

Z t2

�1
dt1 p.t1 j x1/ p. t2 j x2/ (18)

If p(D D 0|x1, x2) > p(D D 1|x1, x2), the participant reports
t1 as being longer, otherwise he/she reportst2 as being longer. If
Equations (17) and (18) are expanded by plugging in Equation
(16), we notice thatp(x1)p(x2) is shared in both the formula of
p(D D 0|x1, x2) andp(D D 1|x1, x2). Therefore, the termsp(x1)
andp(x2) can be ignored in making judgment aboutD.

Choice Probability
While the inference process described above is deterministic,
x1 and x2, the measurements of duration based on certain
neural processes in the visual pathway are stochastic. They can
vary from trial to trial even if the physical durations are the
same. In our modeling, this variation was the major source of
variability in participants' judgments. We did not make speci�c
assumption on howx1 andx2 are generated. We only made the
simple assumption that their distributions follow Equations (1)
and (2). In order to calculate the probability that a participant
makes a certain judgment on a trial, we integrated over the
space of distribution ofx1 and x2 where the corresponding
judgment should be made according to the above decision rule.
In addition, similarly as in Experiment 1 and 2, we included a
lapse rate term which describes the probability that a participant
fails to pay attention to the stimuli and makes a random
guess. The choice probability thus takes the following form:

pM;" . r j t1; t2/ D

8
>><

>>:

1
2� C .1 � � /

RC1
�1 dx1

RC1
�1 dx2H

�
pM;" .D D 1 j x1; x2/ � pM;" .D D 0 j x1; x2/

�

� pM;" .x1 j t1/ � pM;" .x2 j t2/ ; if r D "t2 is longer"
1
2� C .1 � � /

RC1
�1 dx1

RC1
�1 dx2H

�
pM;" .DD 0 j x1; x2/ � pM;" .D D 1 j x1; x2/

�

� pM;" .x1 j t1/ � pM;" .x2 j t2/ ; if r D "t2 is shorter"

(19)

In the above equation,r is the judgment.M indicates the model
under consideration." represents all the free parameters of model
M. H(�) means a step function which outputs 1 only when the
input is larger or equal to 0 and outputs 0 otherwise.� is the lapse
rate.

An analytic form of the choice probability does not exist as
function of t1 and t2. To calculate the integral numerically, we
used a Gaussian–Hermite quadrature of order 7 to approximate

the integration overx1. For a value ofx1 chosen as the abscissa
in the integration, the value ofx2 that satis�esp(D D 0 |x1,
x2) D p(D D 1 |x1, x2) was found by numerical search. The step
function H(�) is 1 on one side of this value ofx2 and 0 on the
other side. Therefore, the integration overx2 was calculated based
on the cumulative distribution function ofp(x2 |t2) at this value
of x2.

Model Comparison
Our goal was to understand how the brain forms a duration
representation when multiple stimuli, each providing con�icting
evidence of duration occur simultaneously. In our modeling
framework, the process of forming duration representation
based on multiple stimuli is the process of calculating the
likelihood of a durationt when the stimulus is HL. Thus, one
major di�erence between the models under consideration is
in their likelihood function p(xi;L, xi;H |ti) (i D 1; 2), when
the stimulus in ti is HL and separate sensory measurements
xi;L and xi;H are formed. In addition, we also aimed to
understand the discrepancy observed in the psychometric curves
corresponding to di�erent orders of displaying the reference
and comparison stimuli. We considered two possible causes for
the discrepancy: the sensory measurement of the �rst duration
on a trial may be degraded more than that of the second
due to decay of memory, and participants may incorporate
the prior belief of duration distribution into their inference
process.

Therefore, we constructed models based on three factors: the
likelihood function of duration when the stimulus is HL, whether
memory decay exists, and how participants incorporate prior
belief of stimulus duration during inference.

Likelihood function
The form of the likelihood function of duration t when the
stimulus is H or L is shared among all models. As the distribution
of measurementx has a constant level of noise over the range of
t (on log scale), a reasonable assumption is that the likelihood
function follows the shape of Gaussian function with the same
standard deviation as the level of noise:

L .ti / D p(xi jti) D
�

N(xi ; � H); if H stimulus is displayed
N(xi ; � L); if L stimulus is displayed

(20)

In the above equation, we also assumed that the biasesbH
and bL in the distributions of xH or xL, as in Equation
(1) and (2), are not accessible by the brain at the inferring
stage. This assumption and the di�erence betweenbH and bL
explain why H is judged as longer than L in our modeling
framework.

The likelihood function of durationt when the stimulus is HL
di�ers between models.
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In models assuming the “weighting” hypothesis, we assume
that the brain �rst weights the two sensory measurements of
duration by Equation (3). The likelihood function oft is then
calculated based onxHL:

p
�
xi;Lxi;H

�
� ti

�
D Lweighting. ti /

D N(ti I wHxi;H C(1� wH)xi;H ;
q

w2
H � 2

i;HC(1 � wH)2� 2
i;L) (21)

We modeled the standard deviation of the likelihood function as
in the above equation because it matches the standard deviation
of the distribution of xHL following the weighting scheme in
Equation (3).

In models assuming the “optimal integration” hypothesis, a
stronger version of the “weighting” hypothesis, the likelihood
is the product of the likelihood oft based on each individual
stimulus element, which amounts to:

p
�
xi;Lxi;H

�
� ti

�
D Loptimal . ti / D N

�
xi;H ; � H

�
� N

�
xi;L; � L

�

In models assuming the “selection” hypothesis, the likelihood
function is based only on the stimulus element that is selected
to estimate duration:

p
�
xi;Lxi;H

�
� ti

�
D Lselection. ti /

D
�

N
�
xi;H ; � H

�
; if stimulus H is selected

N
�
xi;L; � L

�
; if stimulus L is selected

(22)

In models assuming the “reliable stimulus” hypothesis, the
likelihood function is based on the stimulus element which
the participants has a smaller standard deviation in his/her
estimation of duration:

p
�
xi;Lxi;H

�
� ti

�
D Lreliable stimulus. ti /

D
�

N
�
xi;H ; � H

�
; if � H<� L

N
�
xi;L; � L

�
; if � H>� L

(23)

In models assuming the “weighting,” “optimal integration,”or
“reliable stimulus” hypothesis, the likelihood function can be
plugged into the inference process and the choice probability can
be calculated for each combination of model parameters.

In models assuming the “selection” hypothesis, if the reference
stimulus is HL and the comparison stimulus is H or L, then the
two choice probabilities, corresponding to either H or L element
being selected from the reference stimulus, are �rst calculated by
plugging the likelihood function corresponding to that stimulus
being selected into the inference process. Then these probabilities
are further multiplied by the probabilities of H or L being
selected and summed together, to calculate the expected choice
probability for a given trial.

p.r j t1; t2; � ; M/ D pselect H. r j t1; t2; � ; M/ cH

C pselect L. r j t1; t2; � ; M/ (1 � cH)(24)

If the comparison stimulus is also HL, then the equation above
is used to �rst calculate the choice probabilities of either Hor L
element being selected from the comparison stimulus. They are
further multiplied bycH and 1-cH and summed similarly.

Memory decay
In order to make a comparison of duration, participants need
to hold the memory of the duration of the �rst stimulus until
making judgment. At the time of making judgment, more
time had elapsed since the �rst stimulus than since the second
stimulus. It is possible that the representation of duration of
the �rst stimulus was more variable than that of the second
stimulus due to decay of memory. Therefore, the second factor
that we consider in constructing models is whether the standard
deviation ofx1 increases compared tox2 due to memory decay.

In models assuming the “decay” hypothesis, the standard
deviation of the distribution ofx1 is scaled up by a constantm
(m > 1) relative to that ofx2 of the same type of stimulus.m
is a free parameter common to all stimulus types. The standard
deviation of the likelihood function of the �rst durationt1 is also
scaled up bym.

In models assuming the “no decay” hypothesis, there is no
di�erence in the standard deviation of the distributions ofx1 and
x2, which is equivalent to �xingm as 1.

Incorporation of prior distribution
The distribution of duration presented in the experiment
was not uniform. It is possible that the brain can gradually
learn the distribution of duration as the experiment continues.
Furthermore, as illustrated inFigures 3B,C, the physical
durations of the two stimuli in any trial were sampled from
two di�erent distributions with random orders. The brain might
further learn this structure. Therefore, we considered three
di�erent hypotheses of how the brain might form a belief of the
prior distribution of duration.

In models assuming the “�at prior” hypothesis, the brain
does not learn any distribution from the experiment but instead
assumes any duration is equally possible to occur for both the
�rst and second stimuli. This is equivalent to saying that the
posterior of duration is the same as the likelihood of duration:p(ti
|xi) D p(xi |ti). The generative model assumed by the brain would
be without the parameter of displaying orderO in Figure 3B.

In models assuming the “single prior” hypothesis, the brain
forms a belief that all stimulus durations are sampled from the
same distribution, which is the mixture of the distribution of the
reference and comparison duration. Note that it is impossible
for participants to learn the exact distribution of the physical
duration, because of the noise in sensory measurement of
duration, and because H and L type of stimuli cast di�erent biases
on the measurements. Therefore, the prior distribution learnt by
the brain should be a smoothed version of the true distribution.
For simplicity, we assume that the prior distributionp(ti) in
Equation (16) takes the form of the convolution of a Gaussian
kernel with the mixture of distributions of the true durationof
both the reference and comparison stimuli.

In models assuming the “double priors” hypothesis, the
brain learns the correct generative model as inFigure 3C, that
durations are sampled from two distributions and a top-level
variableO determines the order in which the two durations are
drawn from these distributions. In order to account for both
the possible orders of display, the brain separately calculates the
posterior probabilities of the decision variableD based on each
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possible orderO, and marginalize overOby taking the average of
these two probabilities:

p.D D 0 j x1; x2/ D

p
�
t1> t2

�
� x1; x2; O D "c-r"

�

C p
�
t1> t2

�
� x1; x2; O D "r-c"

�

2
(25)

p.D D 1 j x1; x2/ D

p
�
t1< t2

�
� x1; x2; O D "c-r"

�

C p
�
t1< t2

�
� x1; x2; O D "r-c"

�

2
(26)

In the above equations, p.t1 > t2 j x1; x2; O/ and
p.t1 < t2 j x1; x2; O/ were calculated similarly as in Equation
(17), except that the posterior probabilities oft1 andt2 depend on
the variableO. We named the prior probability of the duration of
the comparison stimuli bypc(t), and that of the reference stimuli
bypr(t). The posterior probabilities oft1 andt2 corresponding to
the two orders of display are:

p(t1jx1; x2; O D "c-r") D
pc(t1)p(x1jt1)

p(x1)
;

p(t2jx1; x2; O D "c-r") D
pr(t2)p(x2jt2)

p(x2)
(27)

p(t1jx1; x2; O D "r-c") D
pr(t1)p(x1jt1)

p(x1)
;

p(t2jx1; x2; O D "r-c") D
pc(t2)p(x2jt2)

p(x2)
(28)

As described above, we considered three factors: the mechanism
of combining duration estimates based on simultaneous stimuli,
the existence of memory decay, and the form of prior
distribution. Each combination of these three factors generates
one model. We compared 24 models (4� 2 � 3) in total based on
cross-validated log-likelihoods of the models (van den Berg et al.,
2014). We �rst separated the trials of each participant into 12
subsets. Each subsets contained approximately an equal number
of trials belonging to each condition and each order of display
(we say “approximately” because the total number of trials is not
a multiple of 12). Then for each model, we performed 12-fold
cross validation. In each case, we left one subset of trials out as
testing data. Trials of the other 11 subsets were treated as training
data. We �tted the model to the training data by searching
for a combination of parameters that maximizes the product
of the choice probabilities over all trials in the training data.
Then with parameters �tted to the training data, we calculated
the log-likelihood of the testing data as the logarithm of the
product of the choice probabilities over all trials in the testing
data. The sum of the log-likelihoods of the testing data over
the 12 instances of cross-validation is the cross-validated log-
likelihood of the model being compared.Figure 3Dillustrate this
procedure.
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